On fractional powers of the Hermite operator and associated Sobolev spaces

Sundaram Thangavelu
Department of Mathematics
Indian Institute of Science
Bangalore-India

Woshop on
Stochastic Analysis and Hermite Sobolev spaces
21-26, June 2021

Given a positive self-adjoint operator A on a Hilbert space \mathcal{H} let us see how we can define the fractional powers $A^{s}, s \in \mathbb{R}$.

Given a positive self-adjoint operator A on a Hilbert space \mathcal{H} let us see how we can define the fractional powers $A^{s}, s \in \mathbb{R}$.

The operator A has a spectral resolution

$$
A=\int_{0}^{\infty} \lambda d E_{\lambda}, \quad\langle A u, v\rangle=\int_{0}^{\infty} \lambda d\left\langle E_{\lambda} u, v\right\rangle
$$

which allows us to define $\varphi(A)$ for any bounded measurable function φ by

$$
\varphi(A)=\int_{0}^{\infty} \varphi(\lambda) d E_{\lambda}, \quad\langle\varphi(A) u, v\rangle=\int_{0}^{\infty} \varphi(\lambda) d\left\langle E_{\lambda} u, v\right\rangle .
$$

Given a positive self-adjoint operator A on a Hilbert space \mathcal{H} let us see how we can define the fractional powers $A^{s}, s \in \mathbb{R}$.

The operator A has a spectral resolution

$$
A=\int_{0}^{\infty} \lambda d E_{\lambda}, \quad\langle A u, v\rangle=\int_{0}^{\infty} \lambda d\left\langle E_{\lambda} u, v\right\rangle
$$

which allows us to define $\varphi(A)$ for any bounded measurable function φ by

$$
\varphi(A)=\int_{0}^{\infty} \varphi(\lambda) d E_{\lambda}, \quad\langle\varphi(A) u, v\rangle=\int_{0}^{\infty} \varphi(\lambda) d\left\langle E_{\lambda} u, v\right\rangle .
$$

In particular, when we take $\varphi(\lambda)=e^{-t \lambda}, t>0$ we get the semigroup

$$
e^{-t A}=\int_{0}^{\infty} e^{-t \lambda} d E_{\lambda}, \quad\left\langle e^{-t A} u, v\right\rangle=\int_{0}^{\infty} e^{-t \lambda} d\left\langle E_{\lambda} u, v\right\rangle
$$

and we plan to use this in defining the fractional powers A^{s}.

Consider the numerical identity, valid for $\lambda>0, s>0$ given by the integral

$$
\lambda^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t \lambda} d t
$$

Consider the numerical identity, valid for $\lambda>0, s>0$ given by the integral

$$
\lambda^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t \lambda} d t
$$

By the operational calculus, it follows that A^{-s} for $s>0$ is given by

$$
A^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-t \lambda} d E_{\lambda}\right) t^{s-1} d t=\frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-t A} t^{s-1} d t
$$

Consider the numerical identity, valid for $\lambda>0, s>0$ given by the integral

$$
\lambda^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t \lambda} d t
$$

By the operational calculus, it follows that A^{-s} for $s>0$ is given by

$$
A^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-t \lambda} d E_{\lambda}\right) t^{s-1} d t=\frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-t A} t^{s-1} d t
$$

In order to define A^{s} for $s>0$ we proceed as follows. Integration by parts gives

$$
\lambda^{1-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} d\left(1-e^{-t \lambda}\right)=\frac{s-1}{\Gamma(s)} \int_{0}^{\infty} t^{(s-1)-1}\left(1-e^{-t \lambda}\right) d t
$$

which is valid for $s>1$. Changing $1-s$ into s we see that for $0<s<1$,

Consider the numerical identity, valid for $\lambda>0, s>0$ given by the integral

$$
\lambda^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} e^{-t \lambda} d t
$$

By the operational calculus, it follows that A^{-s} for $s>0$ is given by

$$
A^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-t \lambda} d E_{\lambda}\right) t^{s-1} d t=\frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-t A} t^{s-1} d t
$$

In order to define A^{s} for $s>0$ we proceed as follows. Integration by parts gives

$$
\lambda^{1-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} t^{s-1} d\left(1-e^{-t \lambda}\right)=\frac{s-1}{\Gamma(s)} \int_{0}^{\infty} t^{(s-1)-1}\left(1-e^{-t \lambda}\right) d t
$$

which is valid for $s>1$. Changing $1-s$ into s we see that for $0<s<1$,

$$
\lambda^{s}=-\frac{s}{\Gamma(1-s)} \int_{0}^{\infty} t^{-s-1}\left(1-e^{-t \lambda}\right) d t
$$

The above numerical identity allows us to define A^{s} for $0<s<1$ by

$$
A^{s}=-\frac{s}{\Gamma(1-s)} \int_{0}^{\infty} t^{-s-1}\left(1-e^{-t A}\right) d t
$$

This definition was originally given by A. V. Balakrishnan in 1960.

The above numerical identity allows us to define A^{s} for $0<s<1$ by

$$
A^{s}=-\frac{s}{\Gamma(1-s)} \int_{0}^{\infty} t^{-s-1}\left(1-e^{-t A}\right) d t
$$

This definition was originally given by A. V. Balakrishnan in 1960.
It is therefore clear that we can define A^{s} once we have information on the semigroup $e^{-t A}$. We now specialise to the Hermite semigroup T_{t} acting on $L^{2}\left(\mathbb{R}^{n}\right)$ which is defined by

The above numerical identity allows us to define A^{s} for $0<s<1$ by

$$
A^{s}=-\frac{s}{\Gamma(1-s)} \int_{0}^{\infty} t^{-s-1}\left(1-e^{-t A}\right) d t
$$

This definition was originally given by A. V. Balakrishnan in 1960.
It is therefore clear that we can define A^{s} once we have information on the semigroup $e^{-t A}$. We now specialise to the Hermite semigroup T_{t} acting on $L^{2}\left(\mathbb{R}^{n}\right)$ which is defined by

$$
T_{t} f(x)=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y, f \in L^{2}\left(\mathbb{R}^{n}\right)
$$

where the kernel $K_{t}(x, y) \in L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is explictly given by

$$
K_{t}(x, y)=(2 \pi)^{-n / 2}(\sinh (2 t))^{-n / 2} e^{-\frac{1}{2} \frac{\cosh (2 t)}{\sinh (2 t)}\left(|x|^{2}+|y|^{2}\right)+\frac{1}{\sinh (2 t)} x \cdot y} .
$$

The above numerical identity allows us to define A^{s} for $0<s<1$ by

$$
A^{s}=-\frac{s}{\Gamma(1-s)} \int_{0}^{\infty} t^{-s-1}\left(1-e^{-t A}\right) d t
$$

This definition was originally given by A. V. Balakrishnan in 1960.
It is therefore clear that we can define A^{s} once we have information on the semigroup $e^{-t A}$. We now specialise to the Hermite semigroup T_{t} acting on $L^{2}\left(\mathbb{R}^{n}\right)$ which is defined by

$$
T_{t} f(x)=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y, f \in L^{2}\left(\mathbb{R}^{n}\right)
$$

where the kernel $K_{t}(x, y) \in L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ is explictly given by

$$
K_{t}(x, y)=(2 \pi)^{-n / 2}(\sinh (2 t))^{-n / 2} e^{-\frac{1}{2} \frac{\cosh (2 t)}{\sinh (2 t)}\left(|x|^{2}+|y|^{2}\right)+\frac{1}{\sinh (2 t)} x \cdot y} .
$$

It is easy to see that T_{t} is a family of bounded linear operators on $L^{2}\left(\mathbb{R}^{n}\right)$ but a priori it is not clear if it is a semigroup of operators.

The semigroup property, namely $T_{t} \circ T_{t^{\prime}}=T_{t+t^{\prime}}$ will follow once we check the identity

$$
K_{t+t^{\prime}}(x, y)=\int_{\mathbb{R}^{n}} K_{t}(x, z) K_{t^{\prime}}(z, y) d z .
$$

The semigroup property, namely $T_{t} \circ T_{t^{\prime}}=T_{t+t^{\prime}}$ will follow once we check the identity

$$
K_{t+t^{\prime}}(x, y)=\int_{\mathbb{R}^{n}} K_{t}(x, z) K_{t^{\prime}}(z, y) d z
$$

This is an easy exercise: simply use the well known formula

$$
(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} a|x|^{2}+b x \cdot y} d x=a^{-n / 2} e^{\frac{1}{2} \frac{b^{2}}{a}|y|^{2}}
$$

valid for $a>0$ and $b \in \mathbb{C}$ along with the trigonometric identities

$$
\sin (a+b)=(\sin a)(\cos b)+(\cos a)(\sin b), \sin ^{2} a+\cos ^{2} a=1
$$

valid for all complex values of a and b.

The semigroup property, namely $T_{t} \circ T_{t^{\prime}}=T_{t+t^{\prime}}$ will follow once we check the identity

$$
K_{t+t^{\prime}}(x, y)=\int_{\mathbb{R}^{n}} K_{t}(x, z) K_{t^{\prime}}(z, y) d z
$$

This is an easy exercise: simply use the well known formula

$$
(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} a|x|^{2}+b x \cdot y} d x=a^{-n / 2} e^{\frac{1}{\frac{1}{2}} \frac{b^{2}}{a}|y|^{2}}
$$

valid for $a>0$ and $b \in \mathbb{C}$ along with the trigonometric identities

$$
\sin (a+b)=(\sin a)(\cos b)+(\cos a)(\sin b), \sin ^{2} a+\cos ^{2} a=1
$$

valid for all complex values of a and b.
Thus T_{t} is indeed a semigroup. It is also easy to show directly that it is a contraction:

$$
\left\|T_{t} f\right\|_{2} \leq e^{-n t}\|f\|_{2}
$$

From the general theory of semigroups, it follows that $T_{t} f=e^{-t H} f$ where the infinitesimal generator H is given by

$$
-H f(x)=\lim _{t \rightarrow 0} t^{-1}\left(T_{t} f(x)-f(x)\right)=\left.\frac{d}{d t}\right|_{t=0} T_{t} f(x)
$$

From the general theory of semigroups, it follows that $T_{t} f=e^{-t H} f$ where the infinitesimal generator H is given by

$$
-H f(x)=\lim _{t \rightarrow 0} t^{-1}\left(T_{t} f(x)-f(x)\right)=\left.\frac{d}{d t}\right|_{t=0} T_{t} f(x) .
$$

The operator H can be explicitly calculated. To do so, let us rewrite T_{t} as a pseudo-differential operator:

$$
T_{t} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a_{t}(x, \xi) \hat{f}(\xi) d \xi
$$

where $\hat{f}(\xi)$ is the Fourier transform of f defined by

From the general theory of semigroups, it follows that $T_{t} f=e^{-t H} f$ where the infinitesimal generator H is given by

$$
-H f(x)=\lim _{t \rightarrow 0} t^{-1}\left(T_{t} f(x)-f(x)\right)=\left.\frac{d}{d t}\right|_{t=0} T_{t} f(x) .
$$

The operator H can be explicitly calculated. To do so, let us rewrite T_{t} as a pseudo-differential operator:

$$
T_{t} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a_{t}(x, \xi) \hat{f}(\xi) d \xi
$$

where $\hat{f}(\xi)$ is the Fourier transform of f defined by

$$
\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x
$$

From the general theory of semigroups, it follows that $T_{t} f=e^{-t H} f$ where the infinitesimal generator H is given by

$$
-H f(x)=\lim _{t \rightarrow 0} t^{-1}\left(T_{t} f(x)-f(x)\right)=\left.\frac{d}{d t}\right|_{t=0} T_{t} f(x)
$$

The operator H can be explicitly calculated. To do so, let us rewrite T_{t} as a pseudo-differential operator:

$$
T_{t} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a_{t}(x, \xi) \hat{f}(\xi) d \xi
$$

where $\hat{f}(\xi)$ is the Fourier transform of f defined by

$$
\hat{f}(\xi)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{-i x \cdot \xi} f(x) d x
$$

Recalling the definition of $T_{t} f$ and making use of the relation

$$
\int_{\mathbb{R}^{n}} \hat{g}(-\xi) \hat{f}(\tilde{\xi}) d \xi=\int_{\mathbb{R}^{n}} g(y) f(y) d y
$$

we obtain the following:

$$
T_{t} f(x)=\int_{\mathbb{R}^{n}} \hat{K}_{t}(x,-\xi) \hat{f}(\xi) d \xi=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y
$$

By calculating the Fourier transform of $K_{t}(x, y)$ in the second set of variables, the above gives

$$
T_{t} f(x)=\int_{\mathbb{R}^{n}} \hat{K}_{t}(x,-\xi) \hat{f}(\xi) d \xi=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y
$$

By calculating the Fourier transform of $K_{t}(x, y)$ in the second set of variables, the above gives

$$
T_{t} f(x)=(2 \pi \cosh (2 t))^{-n / 2} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \tanh (2 t)\left(|x|^{2}+|\xi|^{2}\right)+i(\cosh (2 t))^{-1} x \cdot \xi} \hat{f}(\xi) d \xi
$$

$$
T_{t} f(x)=\int_{\mathbb{R}^{n}} \hat{K}_{t}(x,-\xi) \hat{f}(\xi) d \xi=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y .
$$

By calculating the Fourier transform of $K_{t}(x, y)$ in the second set of variables, the above gives

$$
T_{t} f(x)=(2 \pi \cosh (2 t))^{-n / 2} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \tanh (2 t)\left(|x|^{2}+|\xi|^{2}\right)+i(\cosh (2 t))^{-1} x \cdot \xi} \hat{f}(\xi) d \xi .
$$

Calculating the derivative of the above at $t=0$ we see that

$$
\left.\frac{d}{d t}\right|_{t=0} T_{t} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi}\left(|x|^{2}+|\xi|^{2}\right) \hat{f}(\xi) d \xi=\left(-\Delta+|x|^{2}\right) f(x) .
$$

Thus the infinitesimal generator of the semigroup T_{t} is the simple harmonic oscillator Hamiltonian $H=-\Delta+|x|^{2}$ also known as the Hermite operator.

$$
T_{t} f(x)=\int_{\mathbb{R}^{n}} \hat{K}_{t}(x,-\xi) \hat{f}(\xi) d \xi=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y .
$$

By calculating the Fourier transform of $K_{t}(x, y)$ in the second set of variables, the above gives

$$
T_{t} f(x)=(2 \pi \cosh (2 t))^{-n / 2} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \tanh (2 t)\left(|x|^{2}+|\xi|^{2}\right)+i(\cosh (2 t))^{-1} x \cdot \xi} \hat{f}(\xi) d \xi .
$$

Calculating the derivative of the above at $t=0$ we see that

$$
\left.\frac{d}{d t}\right|_{t=0} T_{t} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi}\left(|x|^{2}+|\xi|^{2}\right) \hat{f}(\xi) d \xi=\left(-\Delta+|x|^{2}\right) f(x) .
$$

Thus the infinitesimal generator of the semigroup T_{t} is the simple harmonic oscillator Hamiltonian $H=-\Delta+|\mathrm{x}|^{2}$ also known as the Hermite operator.
From now onwards we will write $e^{-t H}$ in place of T_{t} and call it the Hermite semigroup. Thus

$$
e^{-t H} f(x)=\int_{\mathbb{R}^{n}} K_{t}(x, y) f(y) d y
$$

As an integral operator with kernel $K_{t} \in L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ the operators $e^{-t H}$ are compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in the spectrum of $e^{-t H}$ for ant $t>0$.

As an integral operator with kernel $K_{t} \in L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ the operators $e^{-t H}$ are compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in the spectrum of $e^{-t H}$ for ant $t>0$.

Suppose for some $t>0$ there exists $f \in L^{2}\left(\mathbb{R}^{n}\right)$ such that $e^{-t H} f=f$. Then by the semigroup property $e^{-k t H} f=f$ for any positive integer k. In view of the estimate

$$
\left\|T_{k t} f\right\|_{2} \leq e^{-n k t}\|f\|_{2}
$$

by letting $k \rightarrow \infty$ we obtain $f=0$.

As an integral operator with kernel $K_{t} \in L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ the operators $e^{-t H}$ are compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in the spectrum of $e^{-t H}$ for ant $t>0$.

Suppose for some $t>0$ there exists $f \in L^{2}\left(\mathbb{R}^{n}\right)$ such that $e^{-t H} f=f$. Then by the semigroup property $e^{-k t H} f=f$ for any positive integer k. In view of the estimate

$$
\left\|T_{k t} f\right\|_{2} \leq e^{-n k t}\|f\|_{2}
$$

by letting $k \rightarrow \infty$ we obtain $f=0$.
If $c_{k}(t)>0$ is the k-th eigenvalue of $e^{-t H}$ then, once again from the semigroup property, it follows that $c_{k}(t) c_{k}(s)=c_{k}(t+s)$ and hence $c_{k}(t)=e^{-t \lambda_{k}}$ where λ_{k} increases to infinity as k tends to infinity.

As an integral operator with kernel $K_{t} \in L^{2}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ the operators $e^{-t H}$ are compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in the spectrum of $e^{-t H}$ for ant $t>0$.

Suppose for some $t>0$ there exists $f \in L^{2}\left(\mathbb{R}^{n}\right)$ such that $e^{-t H} f=f$. Then by the semigroup property $e^{-k t H} f=f$ for any positive integer k. In view of the estimate

$$
\left\|T_{k t} f\right\|_{2} \leq e^{-n k t}\|f\|_{2}
$$

by letting $k \rightarrow \infty$ we obtain $f=0$.
If $c_{k}(t)>0$ is the k-th eigenvalue of $e^{-t H}$ then, once again from the semigroup property, it follows that $c_{k}(t) c_{k}(s)=c_{k}(t+s)$ and hence $c_{k}(t)=e^{-t \lambda_{k}}$ where λ_{k} increases to infinity as k tends to infinity.
We write the spectral decomposition of $e^{-t H}$ as

$$
e^{-t H} f=\sum_{k=0}^{\infty} e^{-t \lambda_{k}} P_{k} f
$$

where P_{k} are finite dimensional projections of $L^{2}\left(\mathbb{R}^{n}\right)$ onto the k-th eigenspace with eigenvalue $c_{k}(t)$.

It then follows that the spectral decomposition of H is given by

$$
H f=\sum_{k=0}^{\infty} \lambda_{k} P_{k} f, \quad f=\sum_{k=0}^{\infty} P_{k} f
$$

where $P_{k} f$ is orthogonal to $P_{j} f$ for $k \neq j$ and the series converges in the norm.

It then follows that the spectral decomposition of H is given by

$$
H f=\sum_{k=0}^{\infty} \lambda_{k} P_{k} f, \quad f=\sum_{k=0}^{\infty} P_{k} f
$$

where $P_{k} f$ is orthogonal to $P_{j} f$ for $k \neq j$ and the series converges in the norm.
The Plancherel theorem for the above expansion reads as

$$
\int_{\mathbb{R}^{n}}|f(x)|^{2} d x=\sum_{k=0}^{\infty}\left\|P_{k} f\right\|_{k}^{2}
$$

It then follows that the spectral decomposition of H is given by

$$
H f=\sum_{k=0}^{\infty} \lambda_{k} P_{k} f, \quad f=\sum_{k=0}^{\infty} P_{k} f
$$

where $P_{k} f$ is orthogonal to $P_{j} f$ for $k \neq j$ and the series converges in the norm.
The Plancherel theorem for the above expansion reads as

$$
\int_{\mathbb{R}^{n}}|f(x)|^{2} d x=\sum_{k=0}^{\infty}\left\|P_{k} f\right\|_{k}^{2} .
$$

Suppose d_{k} is the dimension of the k-th eigenspace. By calculating the trace of $e^{-t H}$ in two different ways we get

$$
\sum_{k=0}^{\infty} d_{k} e^{-t \lambda_{k}}=\int_{\mathbb{R}^{n}} K_{t}(x, x) d x=(2 \pi)^{-n / 2}(\sinh (2 t))^{-n / 2} \int_{\mathbb{R}^{n}} e^{-(\tanh t)|x|^{2}} d x
$$

It then follows that the spectral decomposition of H is given by

$$
H f=\sum_{k=0}^{\infty} \lambda_{k} P_{k} f, \quad f=\sum_{k=0}^{\infty} P_{k} f
$$

where $P_{k} f$ is orthogonal to $P_{j} f$ for $k \neq j$ and the series converges in the norm.
The Plancherel theorem for the above expansion reads as

$$
\int_{\mathbb{R}^{n}}|f(x)|^{2} d x=\sum_{k=0}^{\infty}\left\|P_{k} f\right\|_{k}^{2}
$$

Suppose d_{k} is the dimension of the k-th eigenspace. By calculating the trace of $e^{-t H}$ in two different ways we get

$$
\sum_{k=0}^{\infty} d_{k} e^{-t \lambda_{k}}=\int_{\mathbb{R}^{n}} K_{t}(x, x) d x=(2 \pi)^{-n / 2}(\sinh (2 t))^{-n / 2} \int_{\mathbb{R}^{n}} e^{-(\tanh t)|x|^{2}} d x
$$

The integral in the previous equation can be evaluated leading to the identity
$\sum_{k=0}^{\infty} d_{k} e^{-t \lambda_{k}}=(\sinh (2 t))^{-n / 2}(2 \tanh t)^{-n / 2}=(2 \sinh t)^{-n}=e^{-n t}\left(1-e^{-2 t}\right)^{-n}$.

Thus we have the following identity:

$$
\sum_{k=0}^{\infty} d_{k} e^{-t\left(\lambda_{k}-n\right)}=\left(1-e^{-2 t}\right)^{-n} .
$$

Thus we have the following identity:

$$
\sum_{k=0}^{\infty} d_{k} e^{-t\left(\lambda_{k}-n\right)}=\left(1-e^{-2 t}\right)^{-n}
$$

Expanding the right hand side in powers of $e^{-2 t}$ we obtain

$$
\sum_{k=0}^{\infty} d_{k} e^{-t\left(\lambda_{k}-n\right)}=\sum_{k=0}^{\infty} \frac{(k+n-1)!}{(n-1)!k!} e^{-2 t k} .
$$

Thus we have the following identity:

$$
\sum_{k=0}^{\infty} d_{k} e^{-t\left(\lambda_{k}-n\right)}=\left(1-e^{-2 t}\right)^{-n}
$$

Expanding the right hand side in powers of $e^{-2 t}$ we obtain

$$
\sum_{k=0}^{\infty} d_{k} e^{-t\left(\lambda_{k}-n\right)}=\sum_{k=0}^{\infty} \frac{(k+n-1)!}{(n-1)!k!} e^{-2 t k}
$$

Using induction, we can conclude that $\lambda_{k}=(2 k+n)$ and $d_{k}=\frac{(k+n-1)!}{(n-1)!k!}$. Since

$$
\#\left\{\alpha \in \mathbb{N}^{n}:|\alpha|=k\right\}=\frac{(k+n-1)!}{(n-1)!k!}
$$

it is natural to index the various eigenfunctions of H corresponding to the eigenvalue $\lambda_{k}=(2 k+n)$ using multi-indices α with $|\alpha|=k$.

Thus for each $\alpha \in \mathbb{N}^{n}$ we let Φ_{α} stand for an eigenfunction with eigenvalue $(2|\alpha|+n)$. We normalise them so that they form an orthonormal basis for the Hilbert space $L^{2}\left(\mathbb{R}^{n}\right)$. We then have

Thus for each $\alpha \in \mathbb{N}^{n}$ we let Φ_{α} stand for an eigenfunction with eigenvalue $(2|\alpha|+n)$. We normalise them so that they form an orthonormal basis for the Hilbert space $L^{2}\left(\mathbb{R}^{n}\right)$. We then have

$$
P_{k} f=\sum_{|\alpha|=k}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}, f=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha} .
$$

Thus for each $\alpha \in \mathbb{N}^{n}$ we let Φ_{α} stand for an eigenfunction with eigenvalue $(2|\alpha|+n)$. We normalise them so that they form an orthonormal basis for the Hilbert space $L^{2}\left(\mathbb{R}^{n}\right)$. We then have

$$
P_{k} f=\sum_{|\alpha|=k}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}, f=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}
$$

The functions Φ_{α} are the normalised Hermite functions and they can be calculated explicitly. For example, when $\varphi(x)=e^{-\frac{1}{2}|x|^{2}}$ the formula for $e^{-t H}$ as a pseudo-differential operator gives us

$$
T_{t} \varphi(x)=(2 \pi)^{-n / 2} \frac{e^{-\frac{1}{2} \tanh (2 t)|x|^{2}}}{(\cosh (2 t))^{n / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \tanh (2 t)|\xi|^{2}+i(\cosh (2 t))^{-1} x \cdot \xi} e^{-\frac{1}{2}|\xi|^{2}} d \xi
$$

Thus for each $\alpha \in \mathbb{N}^{n}$ we let Φ_{α} stand for an eigenfunction with eigenvalue $(2|\alpha|+n)$. We normalise them so that they form an orthonormal basis for the Hilbert space $L^{2}\left(\mathbb{R}^{n}\right)$. We then have

$$
P_{k} f=\sum_{|\alpha|=k}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}, f=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha} .
$$

The functions Φ_{α} are the normalised Hermite functions and they can be calculated explicitly. For example, when $\varphi(x)=e^{-\frac{1}{2}|x|^{2}}$ the formula for $e^{-t H}$ as a pseudo-differential operator gives us

$$
T_{t} \varphi(x)=(2 \pi)^{-n / 2} \frac{e^{-\frac{1}{2} \tanh (2 t)|x|^{2}}}{(\cosh (2 t))^{n / 2}} \int_{\mathbb{R}^{n}} e^{-\frac{1}{2} \tanh (2 t)|\xi|^{2}+i(\cosh (2 t))^{-1} x \cdot \xi} e^{-\frac{1}{2}|\xi|^{2}} d \xi
$$

Using $1+\tanh (2 t)=e^{2 t}(\cosh (2 t))^{-1}$ we can evaluate the integral obtaining $e^{-t H} \varphi=e^{-n t} \varphi$. As $d_{0}=1$ it follows that $\Phi_{0}(x)=c_{0} e^{-\frac{1}{2}|x|^{2}}$.

It can be shown that for every $\alpha \in \mathbb{N}^{n}$ the function $\Phi_{\alpha}(x)=c_{\alpha} H_{\alpha}(x) e^{-\frac{1}{2}|x|^{2}}$ where H_{α} is a polynomial of degree $|\alpha|$. From this it follows that all $\Phi_{\alpha} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the class of Schwartz functions on \mathbb{R}^{n}.

It can be shown that for every $\alpha \in \mathbb{N}^{n}$ the function $\Phi_{\alpha}(x)=c_{\alpha} H_{\alpha}(x) e^{-\frac{1}{2}|x|^{2}}$ where H_{α} is a polynomial of degree $|\alpha|$. From this it follows that all $\Phi_{\alpha} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the class of Schwartz functions on \mathbb{R}^{n}.

Recall that a function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ is Schwartz if and only if $x^{\alpha} \partial^{\beta} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $\alpha, \beta \in \mathbb{N}^{n}$. There is a very useful description of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ in terms of the Hermite operator.

It can be shown that for every $\alpha \in \mathbb{N}^{n}$ the function $\Phi_{\alpha}(x)=c_{\alpha} H_{\alpha}(x) e^{-\frac{1}{2}|x|^{2}}$ where H_{α} is a polynomial of degree $|\alpha|$. From this it follows that all $\Phi_{\alpha} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the class of Schwartz functions on \mathbb{R}^{n}.

Recall that a function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ is Schwartz if and only if $x^{\alpha} \partial^{\beta} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $\alpha, \beta \in \mathbb{N}^{n}$. There is a very useful description of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ in terms of the Hermite operator. For $j=1,2, \ldots, n$ let us define the following first order differential operators

$$
A_{j}=\frac{\partial}{\partial x_{j}}+x_{j}, \quad A_{j}^{*}=-\frac{\partial}{\partial x_{j}}+x_{j}
$$

It can be shown that for every $\alpha \in \mathbb{N}^{n}$ the function $\Phi_{\alpha}(x)=c_{\alpha} H_{\alpha}(x) e^{-\frac{1}{2}|x|^{2}}$ where H_{α} is a polynomial of degree $|\alpha|$. From this it follows that all $\Phi_{\alpha} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the class of Schwartz functions on \mathbb{R}^{n}.

Recall that a function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ is Schwartz if and only if $x^{\alpha} \partial^{\beta} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $\alpha, \beta \in \mathbb{N}^{n}$. There is a very useful description of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ in terms of the Hermite operator. For $j=1,2, \ldots, n$ let us define the following first order differential operators

$$
A_{j}=\frac{\partial}{\partial x_{j}}+x_{j}, \quad A_{j}^{*}=-\frac{\partial}{\partial x_{j}}+x_{j}
$$

In terms of these 'annihilation' and 'creation' operators we can express H as

$$
H=\frac{1}{2} \sum_{j=1}^{n}\left(A_{j} A_{j}^{*}+A_{j}^{*} A_{j}\right)
$$

It can be shown that for every $\alpha \in \mathbb{N}^{n}$ the function $\Phi_{\alpha}(x)=c_{\alpha} H_{\alpha}(x) e^{-\frac{1}{2}|x|^{2}}$ where H_{α} is a polynomial of degree $|\alpha|$. From this it follows that all $\Phi_{\alpha} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the class of Schwartz functions on \mathbb{R}^{n}.

Recall that a function $f \in L^{2}\left(\mathbb{R}^{n}\right)$ is Schwartz if and only if $x^{\alpha} \partial^{\beta} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $\alpha, \beta \in \mathbb{N}^{n}$. There is a very useful description of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ in terms of the Hermite operator. For $j=1,2, \ldots, n$ let us define the following first order differential operators

$$
A_{j}=\frac{\partial}{\partial x_{j}}+x_{j}, \quad A_{j}^{*}=-\frac{\partial}{\partial x_{j}}+x_{j}
$$

In terms of these 'annihilation' and 'creation' operators we can express H as

$$
H=\frac{1}{2} \sum_{j=1}^{n}\left(A_{j} A_{j}^{*}+A_{j}^{*} A_{j}\right)
$$

It then follows that $x^{\alpha} \partial^{\beta} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $\alpha, \beta \in \mathbb{N}^{n}$ if and only if $H^{k} f \in L^{2}\left(\mathbb{R}^{n}\right)$ for all $k \in \mathbb{N}$. Thus we have a new definition of $\mathcal{S}\left(\mathbb{R}^{n}\right)$.

Moreover, the topology of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is given by the increasing family of norms

$$
\|f\|_{(2 m)}^{2}=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{2 m}\left|\left\langle f, \Phi_{\alpha}\right\rangle\right|^{2}=\left\|H^{m} f\right\|_{2}^{2}
$$

Moreover, the topology of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is given by the increasing family of norms

$$
\|f\|_{(2 m)}^{2}=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{2 m}\left|\left\langle f, \Phi_{\alpha}\right\rangle\right|^{2}=\left\|H^{m} f\right\|_{2}^{2}
$$

If $\Lambda: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ is a tempered distribution, then it follows that for some $m \in \mathbb{N}$ we have

$$
|(\Lambda, \varphi)| \leq C\|\varphi\|_{(2 m)}, \quad \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Moreover, the topology of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is given by the increasing family of norms

$$
\|f\|_{(2 m)}^{2}=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{2 m}\left|\left\langle f, \Phi_{\alpha}\right\rangle\right|^{2}=\left\|H^{m} f\right\|_{2}^{2} .
$$

If $\Lambda: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ is a tempered distribution, then it follows that for some $m \in \mathbb{N}$ we have

$$
|(\Lambda, \varphi)| \leq C\|\varphi\|_{(2 m)}, \quad \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

As $\Phi_{\alpha} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ it follows that $\left|\left(\Lambda, \Phi_{\alpha}\right)\right| \leq C(2|\alpha|+n)^{m}$ and hence the series

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-2 m-n-1}\left|\left(\Lambda, \Phi_{\alpha}\right)\right|^{2}
$$

converges. (This is due to the easily verifiable estimate $d_{k} \leq c(2 k+n)^{n-1}$.)

Moreover, the topology of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ is given by the increasing family of norms

$$
\|f\|_{(2 m)}^{2}=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{2 m}\left|\left\langle f, \Phi_{\alpha}\right\rangle\right|^{2}=\left\|H^{m} f\right\|_{2}^{2} .
$$

If $\Lambda: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}$ is a tempered distribution, then it follows that for some $m \in \mathbb{N}$ we have

$$
|(\Lambda, \varphi)| \leq C\|\varphi\|_{(2 m)}, \quad \varphi \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

As $\Phi_{\alpha} \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ it follows that $\left|\left(\Lambda, \Phi_{\alpha}\right)\right| \leq C(2|\alpha|+n)^{m}$ and hence the series

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-2 m-n-1}\left|\left(\Lambda, \Phi_{\alpha}\right)\right|^{2}
$$

converges. (This is due to the easily verifiable estimate $d_{k} \leq c(2 k+n)^{n-1}$.)
Thus it makes sense to introduce the following subspaces of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$: for any $s \in \mathbb{R}$ we define

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)=\left\{f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right):\|f\|_{(s)}<\infty\right\}
$$

where

$$
\|f\|_{(s)}^{2}=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{s}\left|\left(f, \Phi_{\alpha}\right)\right|^{2}, \quad f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

Observe that $\mathcal{S}\left(\mathbb{R}^{n}\right) \subset W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ for any s and $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset L^{2}\left(\mathbb{R}^{n}\right)$ for $s \geq 0$. Moreover, $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset W_{H}^{t, 2}\left(\mathbb{R}^{n}\right)$ for $t<s$ and every $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for some s.

$$
\mathcal{S}\left(\mathbb{R}^{n}\right)=\cap_{s \in \mathbb{R}} W_{H}^{s, 2}\left(\mathbb{R}^{n}\right), \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)=\cup_{s \in \mathbb{R}} W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) .
$$

Observe that $\mathcal{S}\left(\mathbb{R}^{n}\right) \subset W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ for any s and $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset L^{2}\left(\mathbb{R}^{n}\right)$ for $s \geq 0$. Moreover, $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset W_{H}^{t, 2}\left(\mathbb{R}^{n}\right)$ for $t<s$ and every $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for some s.

$$
\mathcal{S}\left(\mathbb{R}^{n}\right)=\cap_{s \in \mathbb{R}} W_{H}^{s, 2}\left(\mathbb{R}^{n}\right), \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)=\cup_{s \in \mathbb{R}} W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) .
$$

These are known as Hermite-Sobolev spaces; they are Hilbert spaces when equipped with the inner product

$$
\langle f, g\rangle_{s}=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{s}\left(f, \Phi_{\alpha}\right) \overline{\left(g, \Phi_{\alpha}\right)} .
$$

Observe that $\mathcal{S}\left(\mathbb{R}^{n}\right) \subset W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ for any s and $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset L^{2}\left(\mathbb{R}^{n}\right)$ for $s \geq 0$. Moreover, $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset W_{H}^{t, 2}\left(\mathbb{R}^{n}\right)$ for $t<s$ and every $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ for some s.

$$
\mathcal{S}\left(\mathbb{R}^{n}\right)=\cap_{s \in \mathbb{R}} W_{H}^{s, 2}\left(\mathbb{R}^{n}\right), \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)=\cup_{s \in \mathbb{R}} W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) .
$$

These are known as Hermite-Sobolev spaces; they are Hilbert spaces when equipped with the inner product

$$
\langle f, g\rangle_{s}=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{s}\left(f, \Phi_{\alpha}\right) \overline{\left(g, \Phi_{\alpha}\right)}
$$

Note that for any $f \in W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ and $g \in W_{H}^{-s, 2}\left(\mathbb{R}^{n}\right)$ the series

$$
\langle f, g\rangle=\sum_{\alpha \in \mathbb{N}^{n}}\left(f, \Phi_{\alpha}\right) \overline{\left(g, \Phi_{\alpha}\right)}
$$

and the duality bracket satisfies the estimate

$$
|\langle f, g\rangle| \leq\|f\|_{(s)}\|g\|_{(-s)} .
$$

Thus the dual of $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ can be identified with $W_{H}^{-s, 2}\left(\mathbb{R}^{n}\right)$ for any $s \in \mathbb{R}$.

For $s>0$ the members of $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ are just L^{2} functions but when s is large, they could be regular. To see this, we consider the associated Hermite series

$$
f(x)=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}(x)
$$

which converges to f in the L^{2} norm, but need not converge pointwise in general.

For $s>0$ the members of $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ are just L^{2} functions but when s is large, they could be regular. To see this, we consider the associated Hermite series

$$
f(x)=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}(x)
$$

which converges to f in the L^{2} norm, but need not converge pointwise in general.
However, by applying Cauchy-Schwarz and making use of the fact that $f \in W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ we obtain

$$
|f(x)|^{2} \leq\|f\|_{(s)}^{2}\left(\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}\right) .
$$

For $s>0$ the members of $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ are just L^{2} functions but when s is large, they could be regular. To see this, we consider the associated Hermite series

$$
f(x)=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}(x)
$$

which converges to f in the L^{2} norm, but need not converge pointwise in general.
However, by applying Cauchy-Schwarz and making use of the fact that $f \in W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ we obtain

$$
|f(x)|^{2} \leq\|f\|_{(s)}^{2}\left(\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}\right) .
$$

Thus we infer that the formal expansion of f converges pointwise provided

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}<\infty .
$$

For $s>0$ the members of $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ are just L^{2} functions but when s is large, they could be regular. To see this, we consider the associated Hermite series

$$
f(x)=\sum_{\alpha \in \mathbb{N}^{n}}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}(x)
$$

which converges to f in the L^{2} norm, but need not converge pointwise in general.
However, by applying Cauchy-Schwarz and making use of the fact that $f \in W_{H}^{\text {s,2 }}\left(\mathbb{R}^{n}\right)$ we obtain

$$
|f(x)|^{2} \leq\|f\|_{(s)}^{2}\left(\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}\right) .
$$

Thus we infer that the formal expansion of f converges pointwise provided

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}<\infty .
$$

To determine the values of s for which the above happens, we bring in the kernel $K_{t}(x, y)$ into play.

Expanding $K_{t}(x, \cdot)$ in terms of Φ_{α} and using $e^{-t H} \Phi_{\alpha}=e^{-(2|\alpha|+n) t} \Phi_{\alpha}$ we get

$$
K_{t}(x, y)=\sum_{\alpha \in \mathbb{N}^{n}} e^{-(2|\alpha|+n) t} \Phi_{\alpha}(x) \Phi_{\alpha}(y) .
$$

It then follows that

Expanding $K_{t}(x, \cdot)$ in terms of Φ_{α} and using $e^{-t H} \Phi_{\alpha}=e^{-(2|\alpha|+n) t} \Phi_{\alpha}$ we get

$$
K_{t}(x, y)=\sum_{\alpha \in \mathbb{N}^{n}} e^{-(2|\alpha|+n) t} \Phi_{\alpha}(x) \Phi_{\alpha}(y)
$$

It then follows that

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} K_{t}(x, x) t^{s-1} d t
$$

Expanding $K_{t}(x, \cdot)$ in terms of Φ_{α} and using $e^{-t H} \Phi_{\alpha}=e^{-(2|\alpha|+n) t} \Phi_{\alpha}$ we get

$$
K_{t}(x, y)=\sum_{\alpha \in \mathbb{N}^{n}} e^{-(2|\alpha|+n) t} \Phi_{\alpha}(x) \Phi_{\alpha}(y) .
$$

It then follows that

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} K_{t}(x, x) t^{s-1} d t
$$

As the kernel $K_{t}(x, x)$ is known explicitly, the integral above becomes

$$
(2 \pi)^{-n / 2} \frac{1}{\Gamma(s)} \int_{0}^{\infty}(\sinh (2 t))^{-n / 2} e^{-\tanh (2 t)|x|^{2}} t^{s-1} d t
$$

Expanding $K_{t}(x, \cdot)$ in terms of Φ_{α} and using $e^{-t H} \Phi_{\alpha}=e^{-(2|\alpha|+n) t} \Phi_{\alpha}$ we get

$$
K_{t}(x, y)=\sum_{\alpha \in \mathbb{N}^{n}} e^{-(2|\alpha|+n) t} \Phi_{\alpha}(x) \Phi_{\alpha}(y) .
$$

It then follows that

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} K_{t}(x, x) t^{s-1} d t
$$

As the kernel $K_{t}(x, x)$ is known explicitly, the integral above becomes

$$
(2 \pi)^{-n / 2} \frac{1}{\Gamma(s)} \int_{0}^{\infty}(\sinh (2 t))^{-n / 2} e^{-\tanh (2 t)|x|^{2}} t^{s-1} d t
$$

As $\tanh (2 t)$ increases to 1 and $\sinh (2 t)$ behaves like $e^{2 t}$ as t tends to infinity, the integral taken over $[1, \infty)$ converges and bounded independent of x.

Expanding $K_{t}(x, \cdot)$ in terms of Φ_{α} and using $e^{-t H} \Phi_{\alpha}=e^{-(2|\alpha|+n) t} \Phi_{\alpha}$ we get

$$
K_{t}(x, y)=\sum_{\alpha \in \mathbb{N}^{n}} e^{-(2|\alpha|+n) t} \Phi_{\alpha}(x) \Phi_{\alpha}(y)
$$

It then follows that

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left(\Phi_{\alpha}(x)\right)^{2}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} K_{t}(x, x) t^{s-1} d t
$$

As the kernel $K_{t}(x, x)$ is known explicitly, the integral above becomes

$$
(2 \pi)^{-n / 2} \frac{1}{\Gamma(s)} \int_{0}^{\infty}(\sinh (2 t))^{-n / 2} e^{-\tanh (2 t)|x|^{2}} t^{s-1} d t
$$

As $\tanh (2 t)$ increases to 1 and $\sinh (2 t)$ behaves like $e^{2 t}$ as t tends to infinity, the integral taken over $[1, \infty)$ converges and bounded independent of x. However, $\sinh (2 t)$ behaves like $2 t$ near zero and hence the integral over $(0,1)$ is finite and bounded if and only if $s>n / 2$.

Thus we have proved the following Sobolev embedding theorem: for $s>n / 2$,

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset C_{b}\left(\mathbb{R}^{n}\right),\|f\|_{\infty} \leq C\|f\|_{(s)} .
$$

Thus we have proved the following Sobolev embedding theorem: for $s>n / 2$,

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset C_{b}\left(\mathbb{R}^{n}\right),\|f\|_{\infty} \leq C\|f\|_{(s)} .
$$

With some more work we can also prove the following: for $s>m+n / 2$,

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset C_{b}^{m}\left(\mathbb{R}^{n}\right), \quad \sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f\right\|_{\infty} \leq C\|f\|_{(s)}
$$

Thus we have proved the following Sobolev embedding theorem: for $s>n / 2$,

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset C_{b}\left(\mathbb{R}^{n}\right),\|f\|_{\infty} \leq C\|f\|_{(s)} .
$$

With some more work we can also prove the following: for $s>m+n / 2$,

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset C_{b}^{m}\left(\mathbb{R}^{n}\right), \quad \sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f\right\|_{\infty} \leq C\|f\|_{(s)}
$$

The embedding theorem we have just proved simply means that for $s>n / 2$, the operator $H^{-s / 2}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{n}\right)$ is bounded. It is also known- not easy to see quickly- that for any $s>0, H^{-s / 2}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is bounded for all $1<p<\infty$.

Thus we have proved the following Sobolev embedding theorem: for $s>n / 2$,

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset C_{b}\left(\mathbb{R}^{n}\right),\|f\|_{\infty} \leq C\|f\|_{(s)} .
$$

With some more work we can also prove the following: for $s>m+n / 2$,

$$
W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \subset C_{b}^{m}\left(\mathbb{R}^{n}\right), \quad \sum_{|\alpha| \leq m}\left\|\partial^{\alpha} f\right\|_{\infty} \leq C\|f\|_{(s)}
$$

The embedding theorem we have just proved simply means that for $s>n / 2$, the operator $H^{-s / 2}: L^{2}\left(\mathbb{R}^{n}\right) \rightarrow L^{\infty}\left(\mathbb{R}^{n}\right)$ is bounded. It is also known- not easy to see quickly- that for any $s>0, H^{-s / 2}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{p}\left(\mathbb{R}^{n}\right)$ is bounded for all $1<p<\infty$.

An analytic interpolation argument will then prove that for any $0<s<n / 2$, $H^{-s / 2}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{q}\left(\mathbb{R}^{n}\right), \frac{1}{p}-\frac{1}{q} \leq \frac{s}{n}$ is bounded for $1<p \leq q<\infty$.

We now study some invariance properties of the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$. The standard Sobolev spaces $W^{s, 2}\left(\mathbb{R}^{n}\right)$ defined in terms of $(1-\Delta)^{s / 2}$ are invariant under translations $\tau_{y} f(x)=f(x+y)$ for any $y \in \mathbb{R}^{n}$.

We now study some invariance properties of the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$. The standard Sobolev spaces $W^{s, 2}\left(\mathbb{R}^{n}\right)$ defined in terms of $(1-\Delta)^{s / 2}$ are invariant under translations $\tau_{y} f(x)=f(x+y)$ for any $y \in \mathbb{R}^{n}$.

This is immediate since $(1-\Delta)^{s / 2} \tau_{y}=\tau_{y}(1-\Delta)^{s / 2}$ which is a consequence of the fact that Δ, as a differential operator with constant coefficients, commutes with τ_{y}.

We now study some invariance properties of the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$. The standard Sobolev spaces $W^{s, 2}\left(\mathbb{R}^{n}\right)$ defined in terms of $(1-\Delta)^{s / 2}$ are invariant under translations $\tau_{y} f(x)=f(x+y)$ for any $y \in \mathbb{R}^{n}$.

This is immediate since $(1-\Delta)^{s / 2} \tau_{y}=\tau_{y}(1-\Delta)^{s / 2}$ which is a consequence of the fact that Δ, as a differential operator with constant coefficients, commutes with τ_{y}.

Even though $H=-\Delta+|x|^{2}$ does not commute with τ_{y}, the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ turn out to be translation invariant. This is a priori not clear and we provide a proof now.

We now study some invariance properties of the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$. The standard Sobolev spaces $W^{s, 2}\left(\mathbb{R}^{n}\right)$ defined in terms of $(1-\Delta)^{s / 2}$ are invariant under translations $\tau_{y} f(x)=f(x+y)$ for any $y \in \mathbb{R}^{n}$.

This is immediate since $(1-\Delta)^{s / 2} \tau_{y}=\tau_{y}(1-\Delta)^{s / 2}$ which is a consequence of the fact that Δ, as a differential operator with constant coefficients, commutes with τ_{y}.

Even though $H=-\Delta+|x|^{2}$ does not commute with τ_{y}, the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ turn out to be translation invariant. This is a priori not clear and we provide a proof now.

The Hermite-Sobolev spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ have an important invariance property not shared by $W^{s, 2}\left(\mathbb{R}^{n}\right)$, namely they are invariant under the Fourier transform.

We now study some invariance properties of the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$. The standard Sobolev spaces $W^{s, 2}\left(\mathbb{R}^{n}\right)$ defined in terms of $(1-\Delta)^{s / 2}$ are invariant under translations $\tau_{y} f(x)=f(x+y)$ for any $y \in \mathbb{R}^{n}$.

This is immediate since $(1-\Delta)^{s / 2} \tau_{y}=\tau_{y}(1-\Delta)^{s / 2}$ which is a consequence of the fact that Δ, as a differential operator with constant coefficients, commutes with τ_{y}.

Even though $H=-\Delta+|x|^{2}$ does not commute with τ_{y}, the spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ turn out to be translation invariant. This is a priori not clear and we provide a proof now.

The Hermite-Sobolev spaces $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ have an important invariance property not shared by $W^{s, 2}\left(\mathbb{R}^{n}\right)$, namely they are invariant under the Fourier transform.

This is a consequence of the fact that Hermite functions are eigenfunctions of the Fourier transform:

$$
\widehat{\Phi_{\alpha}}(\xi)=(-i)^{|\alpha|} \Phi_{\alpha}(\xi) .
$$

Recall that $f \in W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left|\left\langle f, \Phi_{\alpha}\right\rangle\right|^{2}<\infty
$$

and our claim is immediate as

$$
\left|\left\langle\widehat{f}, \Phi_{\alpha}\right\rangle\right|=\left|\left\langle f, \widehat{\Phi_{\alpha}}\right\rangle\right|=\left|\left\langle f, \Phi_{\alpha}\right\rangle\right| .
$$

Recall that $f \in W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left|\left\langle f, \Phi_{\alpha}\right\rangle\right|^{2}<\infty
$$

and our claim is immediate as

$$
\left|\left\langle\widehat{f}, \Phi_{\alpha}\right\rangle\right|=\left|\left\langle f, \widehat{\Phi_{\alpha}}\right\rangle\right|=\left|\left\langle f, \Phi_{\alpha}\right\rangle\right| .
$$

We will show that $\tau_{y}: W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \rightarrow W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ is bounded and satisfies

$$
\left\|\tau_{y} f\right\|_{(s)} \leq C\left(1+|y|^{2}\right)^{s / 2}\|f\|_{(s)}
$$

Recall that $f \in W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{-s}\left|\left\langle f, \Phi_{\alpha}\right\rangle\right|^{2}<\infty
$$

and our claim is immediate as

$$
\left|\left\langle\widehat{f}, \Phi_{\alpha}\right\rangle\right|=\left|\left\langle f, \widehat{\Phi_{\alpha}}\right\rangle\right|=\left|\left\langle f, \Phi_{\alpha}\right\rangle\right| .
$$

We will show that $\tau_{y}: W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \rightarrow W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ is bounded and satisfies

$$
\left\|\tau_{y} f\right\|_{(s)} \leq C\left(1+|y|^{2}\right)^{s / 2}\|f\|_{(s)}
$$

As $W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ is invariant under Fourier transform it is enough to show that

$$
\left\|e_{y} f\right\|_{(s)} \leq C\left(1+|y|^{2}\right)^{s / 2}\|f\|_{(s)}, \quad e_{y} f(\xi)=e^{i y \cdot \xi} f(\xi)
$$

A simple calculation shows that

$$
e^{-i y \cdot \xi} H\left(e_{y} f\right)(\xi)=H f(\xi)+|y|^{2} f(\xi)+i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}} f(\xi)
$$

A simple calculation shows that

$$
e^{-i y \cdot \xi} H\left(e_{y} f\right)(\xi)=H f(\xi)+|y|^{2} f(\xi)+i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}} f(\xi)
$$

If we let $p(y, \partial)=i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}}$ we can write the above as

$$
e_{y}^{-1} H e_{y}=H+p(y, \partial)+|y|^{2}
$$

A simple calculation shows that

$$
e^{-i y \cdot \xi} H\left(e_{y} f\right)(\xi)=H f(\xi)+|y|^{2} f(\xi)+i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}} f(\xi)
$$

If we let $p(y, \partial)=i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}^{j}}$ we can write the above as

$$
e_{y}^{-1} H e_{y}=H+p(y, \partial)+|y|^{2} .
$$

By defining $P(y)=p(y, \partial) H^{-1}+|y|^{2} H^{-1}$, the above relation gives

$$
e_{y}^{-1} H e_{y}=H+P(y) H, e_{y}^{-1} H^{m} e_{y}=(H+P(y) H)^{m} .
$$

A simple calculation shows that

$$
e^{-i y \cdot \xi} H\left(e_{y} f\right)(\xi)=H f(\xi)+|y|^{2} f(\xi)+i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}} f(\xi)
$$

If we let $p(y, \partial)=i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}^{j}}$ we can write the above as

$$
e_{y}^{-1} H e_{y}=H+p(y, \partial)+|y|^{2} .
$$

By defining $P(y)=p(y, \partial) H^{-1}+|y|^{2} H^{-1}$, the above relation gives

$$
e_{y}^{-1} H e_{y}=H+P(y) H, e_{y}^{-1} H^{m} e_{y}=(H+P(y) H)^{m} .
$$

We claim that the operator $P(y)$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ and satisfies

$$
\|P(y) f\|_{2} \leq c\left(1+|y|^{2}\right)\|f\|_{2} .
$$

We assume this for the time being and proceed.

By expanding $(H+P(y) H)^{m}$ and using the boundedness of $P(y)$ on $L^{2}\left(\mathbb{R}^{n}\right)$ we get

$$
\left\|H^{m} e_{y} f\right\|_{2}=\left\|e_{y}^{-1} H^{m} e_{y} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m}\left\|H^{m} f\right\|_{2} .
$$

By expanding $(H+P(y) H)^{m}$ and using the boundedness of $P(y)$ on $L^{2}\left(\mathbb{R}^{n}\right)$ we get

$$
\left\|H^{m} e_{y} f\right\|_{2}=\left\|e_{y}^{-1} H^{m} e_{y} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m}\left\|H^{m} f\right\|_{2}
$$

Our result for $s=2 m, m \in \mathbb{N}$ follows from the above estimate. To prove the general case we use a bit of complex analysis in the form of Hadamard's three lines lemma.

By expanding $(H+P(y) H)^{m}$ and using the boundedness of $P(y)$ on $L^{2}\left(\mathbb{R}^{n}\right)$ we get

$$
\left\|H^{m} e_{y} f\right\|_{2}=\left\|e_{y}^{-1} H^{m} e_{y} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m}\left\|H^{m} f\right\|_{2}
$$

Our result for $s=2 m, m \in \mathbb{N}$ follows from the above estimate. To prove the general case we use a bit of complex analysis in the form of Hadamard's three lines lemma.

First observe that for any complex $\zeta=s+i t, s, t \in \mathbb{R}$ we can define H^{ζ} by

$$
H^{\zeta} f=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{\zeta}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}
$$

where the series converges in $L^{2}\left(\mathbb{R}^{n}\right)$ whenever $f \in W_{H}^{2 s, 2}\left(\mathbb{R}^{n}\right)$. Also note that $H^{i t}: W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \rightarrow W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ is an isometry for any $t \in \mathbb{R}$.

By expanding $(H+P(y) H)^{m}$ and using the boundedness of $P(y)$ on $L^{2}\left(\mathbb{R}^{n}\right)$ we get

$$
\left\|H^{m} e_{y} f\right\|_{2}=\left\|e_{y}^{-1} H^{m} e_{y} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m}\left\|H^{m} f\right\|_{2} .
$$

Our result for $s=2 m, m \in \mathbb{N}$ follows from the above estimate. To prove the general case we use a bit of complex analysis in the form of Hadamard's three lines lemma.

First observe that for any complex $\zeta=s+i t, s, t \in \mathbb{R}$ we can define H^{ζ} by

$$
H^{\zeta} f=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{\zeta}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}
$$

where the series converges in $L^{2}\left(\mathbb{R}^{n}\right)$ whenever $f \in W_{H}^{2 s, 2}\left(\mathbb{R}^{n}\right)$. Also note that $H^{i t}: W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \rightarrow W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ is an isometry for any $t \in \mathbb{R}$.

When $f \in W_{H}^{2 a, 2}\left(\mathbb{R}^{n}\right), a>0$ the map $\zeta \rightarrow H^{\zeta} f$ is an $L^{2}\left(\mathbb{R}^{n}\right)$ valued holomorphic function on the strip $S_{a}=\{\zeta: 0<|\operatorname{Re}(\zeta)|<a\}$. If $g \in L^{2}\left(\mathbb{R}^{n}\right)$ then the map $\zeta \rightarrow\left\langle H^{\zeta} f, g\right\rangle$ is holomorphic on S_{a} and continuous upto the boundary.

By expanding $(H+P(y) H)^{m}$ and using the boundedness of $P(y)$ on $L^{2}\left(\mathbb{R}^{n}\right)$ we get

$$
\left\|H^{m} e_{y} f\right\|_{2}=\left\|e_{y}^{-1} H^{m} e_{y} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m}\left\|H^{m} f\right\|_{2} .
$$

Our result for $s=2 m, m \in \mathbb{N}$ follows from the above estimate. To prove the general case we use a bit of complex analysis in the form of Hadamard's three lines lemma.

First observe that for any complex $\zeta=s+i t, s, t \in \mathbb{R}$ we can define H^{ζ} by

$$
H^{\zeta} f=\sum_{\alpha \in \mathbb{N}^{n}}(2|\alpha|+n)^{\zeta}\left\langle f, \Phi_{\alpha}\right\rangle \Phi_{\alpha}
$$

where the series converges in $L^{2}\left(\mathbb{R}^{n}\right)$ whenever $f \in W_{H}^{2 s, 2}\left(\mathbb{R}^{n}\right)$. Also note that $H^{i t}: W_{H}^{s, 2}\left(\mathbb{R}^{n}\right) \rightarrow W_{H}^{s, 2}\left(\mathbb{R}^{n}\right)$ is an isometry for any $t \in \mathbb{R}$.

When $f \in W_{H}^{2 a, 2}\left(\mathbb{R}^{n}\right), a>0$ the map $\zeta \rightarrow H^{\zeta} f$ is an $L^{2}\left(\mathbb{R}^{n}\right)$ valued holomorphic function on the strip $S_{a}=\{\zeta: 0<|\operatorname{Re}(\zeta)|<a\}$. If $g \in L^{2}\left(\mathbb{R}^{n}\right)$ then the map $\zeta \rightarrow\left\langle H^{\zeta} f, g\right\rangle$ is holomorphic on S_{a} and continuous upto the boundary.

Given $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right), y \in \mathbb{R}^{n}$ consider the function defined on S_{1} by

$$
F_{m}(\zeta)=\left\langle H^{m+\zeta} \tau_{y} H^{-m-\zeta} f, g\right\rangle .
$$

This is clearly holomorphic on S_{1}, continuous and bounded on the closed strip.

Given $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right), y \in \mathbb{R}^{n}$ consider the function defined on S_{1} by

$$
F_{m}(\zeta)=\left\langle H^{m+\zeta} \tau_{y} H^{-m-\zeta} f, g\right\rangle .
$$

This is clearly holomorphic on S_{1}, continuous and bounded on the closed strip. As $H^{-m-\zeta_{f}} f W_{H}^{2(m+s), 2}\left(\mathbb{R}^{n}\right)$ the boundedness of τ_{y} on $W_{H}^{2 m, 2}\left(\mathbb{R}^{n}\right)$ and $W_{H}^{2(m+1), 2}\left(\mathbb{R}^{n}\right)$ shows that

$$
\left|F_{m}(i t)\right| \leq C_{0}(y)\|f\|_{2}\|g\|_{2},\left|F_{m}(1+i t)\right| \leq C_{1}(y)\|f\|_{2}\|g\|_{2}
$$

where $C_{j}(y) \leq C\left(1+|y|^{2}\right)^{m+j}$.

Given $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right), y \in \mathbb{R}^{n}$ consider the function defined on S_{1} by

$$
F_{m}(\zeta)=\left\langle H^{m+\zeta} \tau_{y} H^{-m-\zeta} f, g\right\rangle .
$$

This is clearly holomorphic on S_{1}, continuous and bounded on the closed strip.
As $H^{-m-\zeta_{f}} f W_{H}^{2(m+s), 2}\left(\mathbb{R}^{n}\right)$ the boundedness of τ_{y} on $W_{H}^{2 m, 2}\left(\mathbb{R}^{n}\right)$ and $W_{H}^{2(m+1), 2}\left(\mathbb{R}^{n}\right)$ shows that

$$
\left|F_{m}(i t)\right| \leq C_{0}(y)\|f\|_{2}\|g\|_{2}, \quad\left|F_{m}(1+i t)\right| \leq C_{1}(y)\|f\|_{2}\|g\|_{2}
$$

where $C_{j}(y) \leq C\left(1+|y|^{2}\right)^{m+j}$.
The three lines lemma applied to F_{m} proves that for $0<s<1$ we have

$$
\left|F_{m}(s+i t)\right| \leq C_{0}(y)^{1-s} C_{1}(y)^{s}\|f\|_{2}\|g\|_{2}
$$

Given $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right), y \in \mathbb{R}^{n}$ consider the function defined on S_{1} by

$$
F_{m}(\zeta)=\left\langle H^{m+\zeta} \tau_{y} H^{-m-\zeta} f, g\right\rangle .
$$

This is clearly holomorphic on S_{1}, continuous and bounded on the closed strip. As $H^{-m-\zeta} f \in W_{H}^{2(m+s), 2}\left(\mathbb{R}^{n}\right)$ the boundedness of τ_{y} on $W_{H}^{2 m, 2}\left(\mathbb{R}^{n}\right)$ and $W_{H}^{2(m+1), 2}\left(\mathbb{R}^{n}\right)$ shows that

$$
\left|F_{m}(i t)\right| \leq C_{0}(y)\|f\|_{2}\|g\|_{2}, \quad\left|F_{m}(1+i t)\right| \leq C_{1}(y)\|f\|_{2}\|g\|_{2}
$$

where $C_{j}(y) \leq C\left(1+|y|^{2}\right)^{m+j}$.
The three lines lemma applied to F_{m} proves that for $0<s<1$ we have

$$
\left|F_{m}(s+i t)\right| \leq C_{0}(y)^{1-s} C_{1}(y)^{s}\|f\|_{2}\|g\|_{2}
$$

This simply means that $H^{m+s} \tau_{y} H^{m-s}$ is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$ and we have the following estimate.

$$
\left\|H^{m+s} \tau_{y} H^{-m-s} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\|f\|_{2}
$$

which translates into our claim, namely

$$
\left\|H^{m+s}\left(\tau_{y} f\right)\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\left\|H^{m+s} f\right\|_{2}
$$

$$
\left\|H^{m+s} \tau_{y} H^{-m-s} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\|f\|_{2}
$$

which translates into our claim, namely

$$
\left\|H^{m+s}\left(\tau_{y} f\right)\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\left\|H^{m+s} f\right\|_{2}
$$

We are still left with proving that the operator

$$
P(y)=p(y, \partial) H^{-1}+|y|^{2} H^{-1}, \quad p(y, \partial)=i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}}
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. As both H^{-1} and $H^{-1 / 2}$ are bounded, it is enough to consider the operator $p(y, \partial) H^{-1 / 2}$.

$$
\left\|H^{m+s} \tau_{y} H^{-m-s} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\|f\|_{2}
$$

which translates into our claim, namely

$$
\left\|H^{m+s}\left(\tau_{y} f\right)\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\left\|H^{m+s} f\right\|_{2}
$$

We are still left with proving that the operator

$$
P(y)=p(y, \partial) H^{-1}+|y|^{2} H^{-1}, \quad p(y, \partial)=i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}}
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. As both H^{-1} and $H^{-1 / 2}$ are bounded, it is enough to consider the operator $p(y, \partial) H^{-1 / 2}$.

Let us define the following operators A_{j} and their adjoints A_{j}^{*} and express $p(y, \partial)$ in terms of them.

$$
A_{j}=\frac{\partial}{\partial \xi_{j}}+\xi_{j}, A_{j}^{*}=-\frac{\partial}{\partial \xi_{j}}+\xi_{j}, 2 \frac{\partial}{\partial \xi_{j}}=A_{j}-A_{j}^{*}
$$

$$
\left\|H^{m+s} \tau_{y} H^{-m-s} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\|f\|_{2}
$$

which translates into our claim, namely

$$
\left\|H^{m+s}\left(\tau_{y} f\right)\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\left\|H^{m+s} f\right\|_{2}
$$

We are still left with proving that the operator

$$
P(y)=p(y, \partial) H^{-1}+|y|^{2} H^{-1}, \quad p(y, \partial)=i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}}
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. As both H^{-1} and $H^{-1 / 2}$ are bounded, it is enough to consider the operator $p(y, \partial) H^{-1 / 2}$.

Let us define the following operators A_{j} and their adjoints A_{j}^{*} and express $p(y, \partial)$ in terms of them.

$$
A_{j}=\frac{\partial}{\partial \xi_{j}}+\xi_{j}, A_{j}^{*}=-\frac{\partial}{\partial \xi_{j}}+\xi_{j}, 2 \frac{\partial}{\partial \xi_{j}}=A_{j}-A_{j}^{*}
$$

$$
\left\|H^{m+s} \tau_{y} H^{-m-s} f\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\|f\|_{2}
$$

which translates into our claim, namely

$$
\left\|H^{m+s}\left(\tau_{y} f\right)\right\|_{2} \leq C\left(1+|y|^{2}\right)^{m+s}\left\|H^{m+s} f\right\|_{2}
$$

We are still left with proving that the operator

$$
P(y)=p(y, \partial) H^{-1}+|y|^{2} H^{-1}, \quad p(y, \partial)=i \sum_{j=1}^{n} y_{j} \frac{\partial}{\partial \xi_{j}}
$$

is bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. As both H^{-1} and $H^{-1 / 2}$ are bounded, it is enough to consider the operator $p(y, \partial) H^{-1 / 2}$.

Let us define the following operators A_{j} and their adjoints A_{j}^{*} and express $p(y, \partial)$ in terms of them.

$$
A_{j}=\frac{\partial}{\partial \xi_{j}}+\xi_{j}, A_{j}^{*}=-\frac{\partial}{\partial \xi_{j}}+\xi_{j}, 2 \frac{\partial}{\partial \xi_{j}}=A_{j}-A_{j}^{*}
$$

It is therefore enough to prove L^{2} boundedness of the operators

$$
R_{j}=A_{j} H^{-1 / 2}, R_{j}^{*}=A_{j}^{*} H^{-1 / 2}
$$

These are called Riesz transforms associated to the Hermite operator.

It is therefore enough to prove L^{2} boundedness of the operators

$$
R_{j}=A_{j} H^{-1 / 2}, R_{j}^{*}=A_{j}^{*} H^{-1 / 2}
$$

These are called Riesz transforms associated to the Hermite operator.
A simple calculation shows that

$$
H=\frac{1}{2} \sum_{j=1}^{n}\left(A_{j} A_{j}^{*}+A_{j}^{*} A_{j}\right), I=\frac{1}{2} \sum_{j=1}^{n}\left(H^{-1 / 2} A_{j} R_{j}^{*}+H^{-1 / 2} A_{j}^{*} R_{j}\right)
$$

It is therefore enough to prove L^{2} boundedness of the operators

$$
R_{j}=A_{j} H^{-1 / 2}, R_{j}^{*}=A_{j}^{*} H^{-1 / 2}
$$

These are called Riesz transforms associated to the Hermite operator.
A simple calculation shows that

$$
H=\frac{1}{2} \sum_{j=1}^{n}\left(A_{j} A_{j}^{*}+A_{j}^{*} A_{j}\right), I=\frac{1}{2} \sum_{j=1}^{n}\left(H^{-1 / 2} A_{j} R_{j}^{*}+H^{-1 / 2} A_{j}^{*} R_{j}\right)
$$

As A_{j} and A_{j}^{*} are adjoints of each other, from the above identity we get

$$
\|f\|_{2}^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\left\|R_{j}^{*} f\right\|_{2}^{2}+\left\|R_{j} f\right\|_{2}^{2}\right)
$$

It is therefore enough to prove L^{2} boundedness of the operators

$$
R_{j}=A_{j} H^{-1 / 2}, R_{j}^{*}=A_{j}^{*} H^{-1 / 2}
$$

These are called Riesz transforms associated to the Hermite operator.
A simple calculation shows that

$$
H=\frac{1}{2} \sum_{j=1}^{n}\left(A_{j} A_{j}^{*}+A_{j}^{*} A_{j}\right), I=\frac{1}{2} \sum_{j=1}^{n}\left(H^{-1 / 2} A_{j} R_{j}^{*}+H^{-1 / 2} A_{j}^{*} R_{j}\right)
$$

As A_{j} and A_{j}^{*} are adjoints of each other, from the above identity we get

$$
\|f\|_{2}^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\left\|R_{j}^{*} f\right\|_{2}^{2}+\left\|R_{j} f\right\|_{2}^{2}\right)
$$

The boundedness of the Riesz transforms are immediate. They are also known to be bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for any $1<p<\infty$.

It is therefore enough to prove L^{2} boundedness of the operators

$$
R_{j}=A_{j} H^{-1 / 2}, R_{j}^{*}=A_{j}^{*} H^{-1 / 2}
$$

These are called Riesz transforms associated to the Hermite operator.
A simple calculation shows that

$$
H=\frac{1}{2} \sum_{j=1}^{n}\left(A_{j} A_{j}^{*}+A_{j}^{*} A_{j}\right), I=\frac{1}{2} \sum_{j=1}^{n}\left(H^{-1 / 2} A_{j} R_{j}^{*}+H^{-1 / 2} A_{j}^{*} R_{j}\right)
$$

As A_{j} and A_{j}^{*} are adjoints of each other, from the above identity we get

$$
\|f\|_{2}^{2}=\frac{1}{2} \sum_{j=1}^{n}\left(\left\|R_{j}^{*} f\right\|_{2}^{2}+\left\|R_{j} f\right\|_{2}^{2}\right)
$$

The boundedness of the Riesz transforms are immediate. They are also known to be bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for any $1<p<\infty$.

We continue with our study of the fractional powers H^{-s} for $s>0$. Recall that the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

$$
e^{-t H} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a_{t}^{\prime}(x, \xi) \hat{f}(\tilde{\xi}) d \xi .
$$

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.

We continue with our study of the fractional powers H^{-s} for $s>0$. Recall that the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

$$
e^{-t H} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a_{t}^{\prime}(x, \xi) \hat{f}(\tilde{\xi}) d \xi .
$$

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.
We can rewrite the above in the Weyl calculus in a slightly different form as

$$
e^{-t H} f(\xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{i(\xi-\eta) \cdot y} a_{t}\left(\frac{\xi+\eta}{2}, y\right) f(\eta) d y d \eta
$$

where the symbol $a_{t}(x, y)$ is also explicitly known.

We continue with our study of the fractional powers H^{-s} for $s>0$. Recall that the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

$$
e^{-t H} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a_{t}^{\prime}(x, \xi) \hat{f}(\tilde{\xi}) d \xi .
$$

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.
We can rewrite the above in the Weyl calculus in a slightly different form as

$$
e^{-t H} f(\xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{i(\xi-\eta) \cdot y} a_{t}\left(\frac{\xi+\eta}{2}, y\right) f(\eta) d y d \eta
$$

where the symbol $a_{t}(x, y)$ is also explicitly known.
As H^{-s} is given in terms of $e^{-t H}$ we get a similar representation for H^{-s} whose symbol is given by

$$
b_{s}(x, y)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} a_{t}(x, y) t^{s-1} d t
$$

We continue with our study of the fractional powers H^{-s} for $s>0$. Recall that the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

$$
e^{-t H} f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi} a_{t}^{\prime}(x, \xi) \hat{f}(\tilde{\xi}) d \xi .
$$

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.
We can rewrite the above in the Weyl calculus in a slightly different form as

$$
e^{-t H} f(\xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{i(\xi-\eta) \cdot y} a_{t}\left(\frac{\xi+\eta}{2}, y\right) f(\eta) d y d \eta
$$

where the symbol $a_{t}(x, y)$ is also explicitly known.
As H^{-s} is given in terms of $e^{-t H}$ we get a similar representation for H^{-s} whose symbol is given by

$$
b_{s}(x, y)=\frac{1}{\Gamma(s)} \int_{0}^{\infty} a_{t}(x, y) t^{s-1} d t
$$

Weyl pseudo-differential operators occur naturally in connection with Fourier transform on the Heisenberg group.

Weyl pseudo-differential operators occur naturally in connection with Fourier transform on the Heisenberg group.

Without getting into technicalities, consider the following family of operators

$$
\pi(z) \varphi(\xi)=e^{i\left(x \cdot \xi+\frac{1}{2} x \cdot y\right)} \varphi(\mathrm{x}+y), \quad z=x+i y \in \mathbb{C}^{n}, \varphi \in L^{2}\left(\mathbb{R}^{n}\right)
$$

It is clear that $\pi(z)$ are unitary operators on $L^{2}\left(\mathbb{R}^{n}\right)$ for each $z \in \mathbb{C}^{n}$.

Weyl pseudo-differential operators occur naturally in connection with Fourier transform on the Heisenberg group.

Without getting into technicalities, consider the following family of operators

$$
\pi(z) \varphi(\xi)=e^{i\left(x \cdot \xi+\frac{1}{2} x \cdot y\right)} \varphi(x+y), \quad z=x+i y \in \mathbb{C}^{n}, \varphi \in L^{2}\left(\mathbb{R}^{n}\right)
$$

It is clear that $\pi(z)$ are unitary operators on $L^{2}\left(\mathbb{R}^{n}\right)$ for each $z \in \mathbb{C}^{n}$.
To each $F \in L^{1}\left(\mathbb{C}^{n}\right)$ we can associate a bounded linear operator $W(F)$ by

$$
W(F) \varphi(\xi)=\int_{\mathbb{R}^{2 n}} F(x, y) \pi(x+i y) \varphi(\xi) d x d y
$$

Weyl pseudo-differential operators occur naturally in connection with Fourier transform on the Heisenberg group.

Without getting into technicalities, consider the following family of operators

$$
\pi(z) \varphi(\xi)=e^{i\left(x \cdot \xi+\frac{1}{2} x \cdot y\right)} \varphi(\mathrm{x}+y), \quad z=x+i y \in \mathbb{C}^{n}, \varphi \in L^{2}\left(\mathbb{R}^{n}\right)
$$

It is clear that $\pi(z)$ are unitary operators on $L^{2}\left(\mathbb{R}^{n}\right)$ for each $z \in \mathbb{C}^{n}$.
To each $F \in L^{1}\left(\mathbb{C}^{n}\right)$ we can associate a bounded linear operator $W(F)$ by

$$
W(F) \varphi(\xi)=\int_{\mathbb{R}^{2 n}} F(x, y) \pi(x+i y) \varphi(\xi) d x d y
$$

$W(F)$ is called the Weyl transform of F which is an integral operator whose kernel is given by

$$
K_{F}(\xi, \eta)=\int_{\mathbb{R}^{n}} e^{\frac{i}{2} x \cdot(\xi+\eta)} F(x, \xi-\eta) d x=\widetilde{F}\left(\frac{\xi+\eta}{2}, \eta-\xi\right)
$$

where $\widetilde{F}(\tilde{\xi}, y)$ is the inverse Fourier transform of F in the first set of variables.

If we let a stand for the full Fourier transform of F in both variables, then

$$
W(F) \varphi(\xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{i(\xi-\eta) \cdot y} a_{t}\left(\frac{\xi+\eta}{2}, y\right) \varphi(\eta) d y d \eta
$$

If we let a stand for the full Fourier transform of F in both variables, then

$$
W(F) \varphi(\xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{i(\xi-\eta) \cdot y} a_{t}\left(\frac{\xi+\eta}{2}, y\right) \varphi(\eta) d y d \eta
$$

For $e^{-t H}$ the kernel is explicitly known. By a simple calculation we can write

$$
e^{-t H}=W\left(p_{t}\right), \quad p_{t}(z)=c_{n}(\sinh t)^{-n} e^{-\frac{1}{4}(\operatorname{coth} t)|z|^{2}}
$$

If we let a stand for the full Fourier transform of F in both variables, then

$$
W(F) \varphi(\xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{i(\xi-\eta) \cdot y} a_{t}\left(\frac{\xi+\eta}{2}, y\right) \varphi(\eta) d y d \eta
$$

For $e^{-t H}$ the kernel is explicitly known. By a simple calculation we can write

$$
e^{-t H}=W\left(p_{t}\right), \quad p_{t}(z)=c_{n}(\sinh t)^{-n} e^{-\frac{1}{4}(\operatorname{coth} t)|z|^{2}} .
$$

The Weyl symbol of $e^{-t H}$ is obtained by taking the Fourier transform of $p_{t}(z)$ on $\mathbb{R}^{2 n}$. Thus

$$
a_{t}(x, \xi)=c_{n}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} .
$$

If we let a stand for the full Fourier transform of F in both variables, then

$$
W(F) \varphi(\xi)=(2 \pi)^{-n} \int_{\mathbb{R}^{2 n}} e^{i(\xi-\eta) \cdot y} a_{t}\left(\frac{\xi+\eta}{2}, y\right) \varphi(\eta) d y d \eta
$$

For $e^{-t H}$ the kernel is explicitly known. By a simple calculation we can write

$$
e^{-t H}=W\left(p_{t}\right), \quad p_{t}(z)=c_{n}(\sinh t)^{-n} e^{-\frac{1}{4}(\operatorname{coth} t)|z|^{2}} .
$$

The Weyl symbol of $e^{-t H}$ is obtained by taking the Fourier transform of $p_{t}(z)$ on $\mathbb{R}^{2 n}$. Thus

$$
a_{t}(x, \xi)=c_{n}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} .
$$

The Weyl symbol of H^{-s} is then given by the integral

$$
b_{s}(x, \xi)=c_{n} \frac{1}{\Gamma(s)} \int_{0}^{\infty}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t
$$

When $s=1$ the Weyl symbol of H^{-1} has a very simple expression. Indeed, a change of variables in the above formula gives

$$
b_{1}(x, \xi)=c_{n} \int_{0}^{1}\left(1-t^{2}\right)^{n / 2-1} e^{-t\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

When $s=1$ the Weyl symbol of H^{-1} has a very simple expression. Indeed, a change of variables in the above formula gives

$$
b_{1}(x, \xi)=c_{n} \int_{0}^{1}\left(1-t^{2}\right)^{n / 2-1} e^{-t\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

In the case when $n=2 m$ is even, we can evaluate the integral explicitly. To see this, let us expand $\left(1-t^{2}\right)^{m-1}$ to get

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{m-1} \frac{(m+j-1)!}{j!(m-1)!}(-1)^{j}\left(\int_{0}^{\left(|x|^{2}+|\xi|^{2}\right)} t^{2 j} e^{-t} d t\right)\left(|x|^{2}+|\xi|^{2}\right)^{-2 j-1}
$$

When $s=1$ the Weyl symbol of H^{-1} has a very simple expression. Indeed, a change of variables in the above formula gives

$$
b_{1}(x, \xi)=c_{n} \int_{0}^{1}\left(1-t^{2}\right)^{n / 2-1} e^{-t\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

In the case when $n=2 m$ is even, we can evaluate the integral explicitly. To see this, let us expand $\left(1-t^{2}\right)^{m-1}$ to get

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{m-1} \frac{(m+j-1)!}{j!(m-1)!}(-1)^{j}\left(\int_{0}^{\left(|x|^{2}+|\xi|^{2}\right)} t^{2 j} e^{-t} d t\right)\left(|x|^{2}+|\xi|^{2}\right)^{-2 j-1} .
$$

We still need to evaluate the integral $\int_{0}^{a} t^{2 j} e^{-t} d t$. Let p_{j} stand for the Taylor polynomials of e^{-t}. Then we can easily prove that

$$
\frac{1}{j!} \int_{0}^{a} t^{j} e^{-t} d t=1-e^{-a} p_{j}(a)
$$

When $s=1$ the Weyl symbol of H^{-1} has a very simple expression. Indeed, a change of variables in the above formula gives

$$
b_{1}(x, \xi)=c_{n} \int_{0}^{1}\left(1-t^{2}\right)^{n / 2-1} e^{-t\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

In the case when $n=2 m$ is even, we can evaluate the integral explicitly. To see this, let us expand $\left(1-t^{2}\right)^{m-1}$ to get

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{m-1} \frac{(m+j-1)!}{j!(m-1)!}(-1)^{j}\left(\int_{0}^{\left(|x|^{2}+|\xi|^{2}\right)} t^{2 j} e^{-t} d t\right)\left(|x|^{2}+|\xi|^{2}\right)^{-2 j-1}
$$

We still need to evaluate the integral $\int_{0}^{a} t^{2 j} e^{-t} d t$. Let p_{j} stand for the Taylor polynomials of e^{-t}. Then we can easily prove that

$$
\frac{1}{j!} \int_{0}^{a} t^{j} e^{-t} d t=1-e^{-a} p_{j}(a)
$$

Thus we have the following result first proved by Cappiello, Rodino and Toft by a different method.

The Weyl symbol of H^{-1} on $\mathbb{R}^{2 n}$ is given by

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{n-1} \frac{(n+j-1)!}{j!(n-1)!}(-1)^{j}(2 j)!\frac{1-p_{2 j}\left(|x|^{2}+|\xi|^{2}\right) e^{-\left(|x|^{2}+|\xi|^{2}\right)}}{\left(|x|^{2}+|\xi|^{2}\right)^{2 j+1}} .
$$

The Weyl symbol of H^{-1} on $\mathbb{R}^{2 n}$ is given by

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{n-1} \frac{(n+j-1)!}{j!(n-1)!}(-1)^{j}(2 j)!\frac{1-p_{2 j}\left(|x|^{2}+|\xi|^{2}\right) e^{-\left(|x|^{2}+|\xi|^{2}\right)}}{\left(|x|^{2}+|\xi|^{2}\right)^{2 j+1}} .
$$

In their paper, they have also proved the following estimates on the symbol $b_{1}(x, \xi)$: there exits a constant $C>0$ such that for all $\alpha \in \mathbb{N}^{2 n}$ and $r \in[0,1]$

$$
\left|\partial_{x, \xi}^{\alpha} b_{1}(x, \xi)\right| \leq C^{|\alpha|+1}(\alpha!)^{(1+r) / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-1-(r / 2)|\alpha|}
$$

The Weyl symbol of H^{-1} on $\mathbb{R}^{2 n}$ is given by

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{n-1} \frac{(n+j-1)!}{j!(n-1)!}(-1)^{j}(2 j)!\frac{1-p_{2 j}\left(|x|^{2}+|\xi|^{2}\right) e^{-\left(|x|^{2}+|\xi|^{2}\right)}}{\left(|x|^{2}+|\xi|^{2}\right)^{2 j+1}}
$$

In their paper, they have also proved the following estimates on the symbol $b_{1}(x, \xi)$: there exits a constant $C>0$ such that for all $\alpha \in \mathbb{N}^{2 n}$ and $r \in[0,1]$

$$
\left|\partial_{x, \xi}^{\alpha} b_{1}(x, \xi)\right| \leq C^{|\alpha|+1}(\alpha!)^{(1+r) / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-1-(r / 2)|\alpha|}
$$

Using the representation we have obtained, we can prove similar estimates for $b_{s}(x, \xi)$ for $0<s \leq 1$ in any dimension. More precisely we prove:

$$
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|+1}(\alpha!)^{(1+r) / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-s-(r / 2)|\alpha|}
$$

The Weyl symbol of H^{-1} on $\mathbb{R}^{2 n}$ is given by

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{n-1} \frac{(n+j-1)!}{j!(n-1)!}(-1)^{j}(2 j)!\frac{1-p_{2 j}\left(|x|^{2}+|\xi|^{2}\right) e^{-\left(|x|^{2}+|\xi|^{2}\right)}}{\left(|x|^{2}+|\xi|^{2}\right)^{2 j+1}}
$$

In their paper, they have also proved the following estimates on the symbol $b_{1}(x, \xi)$: there exits a constant $C>0$ such that for all $\alpha \in \mathbb{N}^{2 n}$ and $r \in[0,1]$

$$
\left|\partial_{x, \xi}^{\alpha} b_{1}(x, \xi)\right| \leq C^{|\alpha|+1}(\alpha!)^{(1+r) / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-1-(r / 2)|\alpha|}
$$

Using the representation we have obtained, we can prove similar estimates for $b_{s}(x, \xi)$ for $0<s \leq 1$ in any dimension. More precisely we prove:

$$
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|+1}(\alpha!)^{(1+r) / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-s-(r / 2)|\alpha|}
$$

We need to recall several properties of the Hermite polynomials. Recall that the Hermite polynomials on \mathbb{R} are defined by

The Weyl symbol of H^{-1} on $\mathbb{R}^{2 n}$ is given by

$$
b_{1}(x, \xi)=c_{n} \sum_{j=0}^{n-1} \frac{(n+j-1)!}{j!(n-1)!}(-1)^{j}(2 j)!\frac{1-p_{2 j}\left(|x|^{2}+|\xi|^{2}\right) e^{-\left(|x|^{2}+|\xi|^{2}\right)}}{\left(|x|^{2}+|\xi|^{2}\right)^{2 j+1}}
$$

In their paper, they have also proved the following estimates on the symbol $b_{1}(x, \xi)$: there exits a constant $C>0$ such that for all $\alpha \in \mathbb{N}^{2 n}$ and $r \in[0,1]$

$$
\left|\partial_{x, \xi}^{\alpha} b_{1}(x, \xi)\right| \leq C^{|\alpha|+1}(\alpha!)^{(1+r) / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-1-(r / 2)|\alpha|}
$$

Using the representation we have obtained, we can prove similar estimates for $b_{s}(x, \xi)$ for $0<s \leq 1$ in any dimension. More precisely we prove:

$$
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|+1}(\alpha!)^{(1+r) / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-s-(r / 2)|\alpha|}
$$

We need to recall several properties of the Hermite polynomials. Recall that the Hermite polynomials on \mathbb{R} are defined by

$$
H_{k}(t)=(-1)^{k} e^{-t^{2}} \frac{d^{k}}{d t^{k}} e^{-t^{2}}
$$

$$
H_{k}(t)=(-1)^{k} e^{-t^{2}} \frac{d^{k}}{d t^{k}} e^{-t^{2}}
$$

The multi-dimensional Hermite functions $H_{\alpha}(x), \alpha \in \mathbb{N}^{n}, x \in \mathbb{R}^{n}$ are defined by taking tensor products. Thus $H_{\alpha}(x, \xi)$ on $\mathbb{R}^{2 n}$ are given by

$$
H_{\alpha}(x, \xi) e^{-\left(|x|^{2}+|\xi|^{2}\right)}=(-1)^{|\alpha|} \partial_{x, \xi}^{\alpha} e^{-\left(|x|^{2}+|\xi|^{2}\right)},
$$

$$
H_{k}(t)=(-1)^{k} e^{-t^{2}} \frac{d^{k}}{d t^{k}} e^{-t^{2}}
$$

The multi-dimensional Hermite functions $H_{\alpha}(x), \alpha \in \mathbb{N}^{n}, x \in \mathbb{R}^{n}$ are defined by taking tensor products. Thus $H_{\alpha}(x, \xi)$ on $\mathbb{R}^{2 n}$ are given by

$$
H_{\alpha}(x, \xi) e^{-\left(|x|^{2}+|\xi|^{2}\right)}=(-1)^{|\alpha|} \partial_{x, \xi}^{\alpha} e^{-\left(|x|^{2}+|\xi|^{2}\right)},
$$

The normalised Hermite functions $\Phi_{\alpha}(x, \xi)$ on $\mathbb{R}^{2 n}$ are defined by

$$
\Phi_{\alpha}(x, \xi)=\left(2^{|\alpha|} \alpha!\pi^{n}\right)^{-1 / 2} H_{\alpha}(x, \xi) e^{-\frac{1}{2}\left(|x|^{2}+|\xi|^{2}\right)} .
$$

$$
H_{k}(t)=(-1)^{k} e^{-t^{2}} \frac{d^{k}}{d t^{k}} e^{-t^{2}}
$$

The multi-dimensional Hermite functions $H_{\alpha}(x), \alpha \in \mathbb{N}^{n}, x \in \mathbb{R}^{n}$ are defined by taking tensor products. Thus $H_{\alpha}(x, \xi)$ on $\mathbb{R}^{2 n}$ are given by

$$
H_{\alpha}(x, \xi) e^{-\left(|x|^{2}+|\xi|^{2}\right)}=(-1)^{|\alpha|} \partial_{x, \zeta}^{\alpha} e^{-\left(|x|^{2}+|\xi|^{2}\right)},
$$

The normalised Hermite functions $\Phi_{\alpha}(x, \xi)$ on $\mathbb{R}^{2 n}$ are defined by

$$
\Phi_{\alpha}(x, \xi)=\left(2^{|\alpha|} \alpha!\pi^{n}\right)^{-1 / 2} H_{\alpha}(x, \xi) e^{-\frac{1}{2}\left(|x|^{2}+|\xi|^{2}\right)} .
$$

We will make use of the fact that $\Phi_{\alpha} \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$ and $\left\|\Phi_{\alpha}\right\|_{\infty} \leq C$ uniformly in α in estimating the derivatives of $b_{s}(x, \xi)$.

$$
H_{k}(t)=(-1)^{k} e^{-t^{2}} \frac{d^{k}}{d t^{k}} e^{-t^{2}}
$$

The multi-dimensional Hermite functions $H_{\alpha}(x), \alpha \in \mathbb{N}^{n}, x \in \mathbb{R}^{n}$ are defined by taking tensor products. Thus $H_{\alpha}(x, \xi)$ on $\mathbb{R}^{2 n}$ are given by

$$
H_{\alpha}(x, \xi) e^{-\left(|x|^{2}+|\xi|^{2}\right)}=(-1)^{|\alpha|} \partial_{x, \zeta}^{\alpha} e^{-\left(|x|^{2}+|\xi|^{2}\right)},
$$

The normalised Hermite functions $\Phi_{\alpha}(x, \xi)$ on $\mathbb{R}^{2 n}$ are defined by

$$
\Phi_{\alpha}(x, \xi)=\left(2^{|\alpha|} \alpha!\pi^{n}\right)^{-1 / 2} H_{\alpha}(x, \xi) e^{-\frac{1}{2}\left(|x|^{2}+|\xi|^{2}\right)} .
$$

We will make use of the fact that $\Phi_{\alpha} \in L^{\infty}\left(\mathbb{R}^{2 n}\right)$ and $\left\|\Phi_{\alpha}\right\|_{\infty} \leq C$ uniformly in α in estimating the derivatives of $b_{s}(x, \xi)$.

Recall that we have proved the following formula for the Weyl symbol of H^{-s} :

$$
b_{s}(x, \xi)=c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .
$$

Recall that we have proved the following formula for the Weyl symbol of H^{-s} :

$$
b_{s}(x, \xi)=c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t
$$

Differentiating the above and recalling the definition of the Hermite polynomials we see that $\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)$ is given by

$$
c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n}(\sqrt{\tanh t})^{|\alpha|} H_{\alpha}\left((\sqrt{\tanh t})(x, \xi) e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .\right.
$$

Recall that we have proved the following formula for the Weyl symbol of H^{-s} :

$$
b_{s}(x, \xi)=c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .
$$

Differentiating the above and recalling the definition of the Hermite polynomials we see that $\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)$ is given by

$$
c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n}(\sqrt{\tanh t})^{|\alpha|} H_{\alpha}\left((\sqrt{\tanh t})(x, \xi) e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .\right.
$$

As Φ_{α} are uniformly bounded, $\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)$ is estimated by

$$
C_{n, s}\left(2^{|\alpha|} \alpha!\right)^{1 / 2} \int_{0}^{\infty} t^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{|\alpha|} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t .
$$

Recall that we have proved the following formula for the Weyl symbol of H^{-s} :

$$
b_{s}(x, \xi)=c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .
$$

Differentiating the above and recalling the definition of the Hermite polynomials we see that $\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)$ is given by

$$
c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n}(\sqrt{\tanh t})^{|\alpha|} H_{\alpha}\left((\sqrt{\tanh t})(x, \xi) e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .\right.
$$

As Φ_{α} are uniformly bounded, $\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)$ is estimated by

$$
C_{n, s}\left(2^{|\alpha|} \alpha!\right)^{1 / 2} \int_{0}^{\infty} t^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{|\alpha|} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

In order to estimate the above, we rewrite the integral as follows:

$$
I=\int_{0}^{\infty} \prod_{j=1}^{n} t^{(s-1) / n}(\cosh t)^{-1}(\sqrt{\tanh t})^{\alpha_{j}} e^{-\frac{1}{2 n}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

Recall that we have proved the following formula for the Weyl symbol of H^{-s} :

$$
b_{s}(x, \xi)=c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n} e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .
$$

Differentiating the above and recalling the definition of the Hermite polynomials we see that $\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)$ is given by

$$
c_{n, s} \int_{0}^{\infty}(\cosh t)^{-n}(\sqrt{\tanh t})^{|\alpha|} H_{\alpha}\left((\sqrt{\tanh t})(x, \xi) e^{-(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} t^{s-1} d t .\right.
$$

As Φ_{α} are uniformly bounded, $\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)$ is estimated by

$$
C_{n, s}\left(2^{|\alpha|} \alpha!\right)^{1 / 2} \int_{0}^{\infty} t^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{|\alpha|} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

In order to estimate the above, we rewrite the integral as follows:

$$
I=\int_{0}^{\infty} \prod_{j=1}^{n} t^{(s-1) / n}(\cosh t)^{-1}(\sqrt{\tanh t})^{\alpha_{j}} e^{-\frac{1}{2 n}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

Applying generalised Holder's inequality, we estimate $I \leq \prod_{j=1}^{n} l_{j}^{1 / n}$ where

$$
I_{j}=\int_{0}^{\infty} t^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{n \alpha_{j}} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

Applying generalised Holder's inequality, we estimate $I \leq \prod_{j=1}^{n} I_{j}^{1 / n}$ where

$$
I_{j}=\int_{0}^{\infty} t^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{n \alpha_{j}} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t .
$$

As tanh t behaves like t for small values of t and is dominated by t for $t \geq 1$ and since $s-1<0$ we can dominate the above integral by

$$
J_{j}=\int_{0}^{\infty}(\tanh t)^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{n \alpha_{j}} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

Applying generalised Holder's inequality, we estimate $I \leq \prod_{j=1}^{n} I_{j}^{1 / n}$ where

$$
I_{j}=\int_{0}^{\infty} t^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{n \alpha_{j}} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t .
$$

As tanh t behaves like t for small values of t and is dominated by t for $t \geq 1$ and since $s-1<0$ we can dominate the above integral by

$$
J_{j}=\int_{0}^{\infty}(\tanh t)^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{n \alpha_{j}} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

By making the change of variables $\tanh t \rightarrow t$ we are led to estimate

$$
J_{j}=c \int_{0}^{1} t^{\frac{n}{2} \alpha_{j}+s-1}\left(1-t^{2}\right)^{n / 2-1} e^{-\frac{1}{2} t\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

Applying generalised Holder's inequality, we estimate $I \leq \prod_{j=1}^{n} l_{j}^{1 / n}$ where

$$
I_{j}=\int_{0}^{\infty} t^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{n \alpha_{j}} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t .
$$

As $\tanh t$ behaves like t for small values of t and is dominated by t for $t \geq 1$ and since $s-1<0$ we can dominate the above integral by

$$
J_{j}=\int_{0}^{\infty}(\tanh t)^{s-1}(\cosh t)^{-n}(\sqrt{\tanh t})^{n \alpha_{j}} e^{-\frac{1}{2}(\tanh t)\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

By making the change of variables $\tanh t \rightarrow t$ we are led to estimate

$$
J_{j}=c \int_{0}^{1} t^{\frac{n}{2} \alpha_{j}+s-1}\left(1-t^{2}\right)^{n / 2-1} e^{-\frac{1}{2} t\left(|x|^{2}+|\xi|^{2}\right)} d t
$$

Under the extra assumption that $n \geq 2$ we can neglect the factor $\left(1-t^{2}\right)^{n / 2-1}$ and get the trivial estimate

$$
J_{j} \leq C\left(|x|^{2}+|\xi|^{2}\right)^{-s}, \quad I \leq C\left(|x|^{2}+|\xi|^{2}\right)^{-s} .
$$

Dominating J_{j} by a gamma integral and evaluating the same we also get

$$
J_{j} \leq C \Gamma\left(s+\frac{n}{2} \alpha_{j}\right)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s} .
$$

Dominating J_{j} by a gamma integral and evaluating the same we also get

$$
J_{j} \leq C \Gamma\left(s+\frac{n}{2} \alpha_{j}\right)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}
$$

By a simple application of Stirling's formula for the gamma function we get

$$
J_{j} \leq C^{\alpha_{j}}\left(\alpha_{j}!\right)^{n / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}, \quad I \leq C^{|\alpha|}(\alpha!)^{1 / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{1}{2}|\alpha|-s} .
$$

Dominating J_{j} by a gamma integral and evaluating the same we also get

$$
J_{j} \leq C \Gamma\left(s+\frac{n}{2} \alpha_{j}\right)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}
$$

By a simple application of Stirling's formula for the gamma function we get

$$
J_{j} \leq C^{\alpha_{j}}\left(\alpha_{j}!\right)^{n / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}, \quad I \leq C^{|\alpha|}(\alpha!)^{1 / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{1}{2}|\alpha|-s} .
$$

Recalling that $\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C\left(2^{|\alpha|} \alpha!\right)^{1 / 2} I$ we have proved the following estimates:

$$
\begin{gathered}
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|}(\alpha!)^{1 / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-s} . \\
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|}(\alpha!)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{1}{2}|\alpha|-s} .
\end{gathered}
$$

Dominating J_{j} by a gamma integral and evaluating the same we also get

$$
J_{j} \leq C \Gamma\left(s+\frac{n}{2} \alpha_{j}\right)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}
$$

By a simple application of Stirling's formula for the gamma function we get

$$
J_{j} \leq C^{\alpha_{j}}\left(\alpha_{j}!\right)^{n / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}, \quad I \leq C^{|\alpha|}(\alpha!)^{1 / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{1}{2}|\alpha|-s} .
$$

Recalling that $\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C\left(2^{|\alpha|} \alpha!\right)^{1 / 2} I$ we have proved the following estimates:

$$
\begin{gathered}
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|}(\alpha!)^{1 / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-s} \\
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|}(\alpha!)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{1}{2}|\alpha|-s}
\end{gathered}
$$

For any $r \in[0,1]$, by writing

$$
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right|=\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right|^{1-r}\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right|^{r}
$$

and using the above estimates, we prove the result.

Dominating J_{j} by a gamma integral and evaluating the same we also get

$$
J_{j} \leq C \Gamma\left(s+\frac{n}{2} \alpha_{j}\right)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}
$$

By a simple application of Stirling's formula for the gamma function we get

$$
J_{j} \leq C^{\alpha_{j}}\left(\alpha_{j}!\right)^{n / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{n}{2} \alpha_{j}-s}, \quad I \leq C^{|\alpha|}(\alpha!)^{1 / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{1}{2}|\alpha|-s} .
$$

Recalling that $\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C\left(2^{|\alpha|} \alpha!\right)^{1 / 2} I$ we have proved the following estimates:

$$
\begin{gathered}
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|}(\alpha!)^{1 / 2}\left(|x|^{2}+|\xi|^{2}\right)^{-s} \\
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right| \leq C^{|\alpha|}(\alpha!)\left(|x|^{2}+|\xi|^{2}\right)^{-\frac{1}{2}|\alpha|-s}
\end{gathered}
$$

For any $r \in[0,1]$, by writing

$$
\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right|=\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right|^{1-r}\left|\partial_{x, \xi}^{\alpha} b_{s}(x, \xi)\right|^{r}
$$

and using the above estimates, we prove the result.

There is yet another way of realising the fractional powers via the so called extension problem associated to the Hermite operator.

There is yet another way of realising the fractional powers via the so called extension problem associated to the Hermite operator.

For $0<s<1$ we consider the initial value problem on $\mathbb{R}^{n} \times \mathbb{R}^{+}$:

$$
\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1-2 s}{\rho} \frac{\partial}{\partial \rho}\right) u(x, \rho)=H u(x, \rho), \quad \lim _{\rho \rightarrow 0} u(x, \rho)=f(x)
$$

where $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and the limit is taken in the $L^{2}\left(\mathbb{R}^{n}\right)$ norm.

There is yet another way of realising the fractional powers via the so called extension problem associated to the Hermite operator.

For $0<s<1$ we consider the initial value problem on $\mathbb{R}^{n} \times \mathbb{R}^{+}$:

$$
\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1-2 s}{\rho} \frac{\partial}{\partial \rho}\right) u(x, \rho)=H u(x, \rho), \quad \lim _{\rho \rightarrow 0} u(x, \rho)=f(x)
$$

where $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and the limit is taken in the $L^{2}\left(\mathbb{R}^{n}\right)$ norm.
A solution of the above problem is explicitly given by

$$
u(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s} \int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t H} f(x) t^{-s-1} d t .
$$

There is yet another way of realising the fractional powers via the so called extension problem associated to the Hermite operator.

For $0<s<1$ we consider the initial value problem on $\mathbb{R}^{n} \times \mathbb{R}^{+}$:

$$
\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1-2 s}{\rho} \frac{\partial}{\partial \rho}\right) u(x, \rho)=H u(x, \rho), \quad \lim _{\rho \rightarrow 0} u(x, \rho)=f(x)
$$

where $f \in L^{2}\left(\mathbb{R}^{n}\right)$ and the limit is taken in the $L^{2}\left(\mathbb{R}^{n}\right)$ norm.
A solution of the above problem is explicitly given by

$$
u(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s} \int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t H} f(x) t^{-s-1} d t .
$$

Indeed, it is very easy to verify that $u(x, \rho)$ defined above satisfies the initial value problem. Simply use the fact that

$$
\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1+2 s}{\rho} \frac{\partial}{\partial \rho}\right)\left(t^{-s-1} e^{-\frac{1}{4 t} \rho^{2}}\right)=\frac{\partial}{\partial t}\left(t^{-s-1} e^{-\frac{1}{4 t} \rho^{2}}\right) .
$$

The initial condition is verified by making a change of variables and writing

$$
u(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \int_{0}^{\infty} e^{-\frac{1}{4 t}} e^{-t \rho^{2} H} f(x) t^{-s-1} d t .
$$

The initial condition is verified by making a change of variables and writing

$$
u(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \int_{0}^{\infty} e^{-\frac{1}{4 t}} e^{-t \rho^{2} H} f(x) t^{-s-1} d t .
$$

The connection between $u(x, \rho)$ and $H^{s} f$ is brought out by the following analysis.

$$
-\rho^{1-2 s} \frac{\partial}{\partial \rho} u(x, \rho)=\frac{2}{4^{5} \Gamma(s)} \rho^{2(1-s)} \int_{0}^{\infty} e^{-\frac{1}{4 t}} e^{-t \rho^{2} H} H f(x) t^{(1-s)-1} d t .
$$

The initial condition is verified by making a change of variables and writing

$$
u(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \int_{0}^{\infty} e^{-\frac{1}{4 t}} e^{-t \rho^{2} H} f(x) t^{-s-1} d t .
$$

The connection between $u(x, \rho)$ and $H^{s} f$ is brought out by the following analysis.

$$
-\rho^{1-2 s} \frac{\partial}{\partial \rho} u(x, \rho)=\frac{2}{4^{\top} \Gamma(s)} \rho^{2(1-s)} \int_{0}^{\infty} e^{-\frac{1}{4 t}} e^{-t \rho^{2} H} H f(x) t^{(1-s)-1} d t .
$$

This, after a change of variables gives

$$
-\rho^{1-2 s} \frac{\partial}{\partial \rho} u(x, \rho)=\frac{2}{4^{s} \Gamma(s)} \int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t H} H f(x) t^{(1-s)-1} d t
$$

The initial condition is verified by making a change of variables and writing

$$
u(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \int_{0}^{\infty} e^{-\frac{1}{4 t}} e^{-t \rho^{2} H} f(x) t^{-s-1} d t .
$$

The connection between $u(x, \rho)$ and $H^{s} f$ is brought out by the following analysis.

$$
-\rho^{1-2 s} \frac{\partial}{\partial \rho} u(x, \rho)=\frac{2}{4^{s} \Gamma(s)} \rho^{2(1-s)} \int_{0}^{\infty} e^{-\frac{1}{4 t}} e^{-t \rho^{2} H} H f(x) t^{(1-s)-1} d t .
$$

This, after a change of variables gives

$$
-\rho^{1-2 s} \frac{\partial}{\partial \rho} u(x, \rho)=\frac{2}{4^{s} \Gamma(s)} \int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t H} H f(x) t^{(1-s)-1} d t
$$

By taking the limit and noting that the integral converges to $\Gamma(1-s) H^{1-s} \mathrm{Hf}$ we obtain

$$
-\rho^{1-2 s} \frac{\partial}{\partial \rho} u(x, \rho)=2^{1-2 s} \frac{\Gamma(1-s)}{\Gamma(s)} H^{s} f .
$$

When we take $P_{k} f, f$ as the initial condition, as $e^{-t H} P_{k} f=e^{-t(2 k+n)} P_{k} f$, the solution of the extension problem takes the form

$$
u_{k}(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t(2 k+n)} t^{-s-1} d t\right) P_{k} f(x)
$$

When we take $P_{k} f, f$ as the initial condition, as $e^{-t H} P_{k} f=e^{-t(2 k+n)} P_{k} f$, the solution of the extension problem takes the form

$$
u_{k}(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t(2 k+n)} t^{-s-1} d t\right) P_{k} f(x)
$$

By making a change of variables we see that $u_{k}(x, \rho)=m_{s}\left((2 k+n) \rho^{2}\right) P_{k} f(x)$ where

$$
m_{s}\left((2 k+n) \rho^{2}\right)=\frac{1}{4^{s} \Gamma(s)}\left((2 k+n) \rho^{2}\right)^{s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t}(2 k+n) \rho^{2}} e^{-t} t^{-s-1} d t\right) .
$$

When we take $P_{k} f, f$ as the initial condition, as $e^{-t H} P_{k} f=e^{-t(2 k+n)} P_{k} f$, the solution of the extension problem takes the form

$$
u_{k}(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t(2 k+n)} t^{-s-1} d t\right) P_{k} f(x)
$$

By making a change of variables we see that $u_{k}(x, \rho)=m_{s}\left((2 k+n) \rho^{2}\right) P_{k} f(x)$ where

$$
m_{s}\left((2 k+n) \rho^{2}\right)=\frac{1}{4^{s} \Gamma(s)}\left((2 k+n) \rho^{2}\right)^{s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t}(2 k+n) \rho^{2}} e^{-t} t^{-s-1} d t\right) .
$$

The above integral can be evaluated in terms of MacDonald function $K_{s}(r)$:

$$
K_{s}(r)=2^{-s-1} r^{s} \int_{0}^{\infty} e^{-\frac{1}{4 t} r^{2}} e^{-t} t^{-s-1} d t
$$

When we take $P_{k} f, f$ as the initial condition, as $e^{-t H} P_{k} f=e^{-t(2 k+n)} P_{k} f$, the solution of the extension problem takes the form

$$
u_{k}(x, \rho)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} e^{-t(2 k+n)} t^{-s-1} d t\right) P_{k} f(x)
$$

By making a change of variables we see that $u_{k}(x, \rho)=m_{s}\left((2 k+n) \rho^{2}\right) P_{k} f(x)$ where

$$
m_{s}\left((2 k+n) \rho^{2}\right)=\frac{1}{4^{s} \Gamma(s)}\left((2 k+n) \rho^{2}\right)^{s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t}(2 k+n) \rho^{2}} e^{-t} t^{-s-1} d t\right) .
$$

The above integral can be evaluated in terms of MacDonald function $K_{s}(r)$:

$$
K_{s}(r)=2^{-s-1} r^{s} \int_{0}^{\infty} e^{-\frac{1}{4 t} r^{2}} e^{-t} t^{-s-1} d t
$$

Thus we have

$$
m_{s}\left((2 k+n) \rho^{2}\right)=\frac{2^{1-s}}{\Gamma(s)}(\sqrt{(2 k+n)} \rho)^{s} K_{s}(\sqrt{(2 k+n)} \rho)
$$

Therefore, a solution of the extension problem with initial condition f takes the form

$$
u(x, \rho)=\frac{2^{1-s}}{\Gamma(s)}(\rho \sqrt{H})^{s} K_{s}(\rho \sqrt{H}) f(x) .
$$

Most of the properties of the solution $u(x, \rho)$ can be read off from this formula.

Therefore, a solution of the extension problem with initial condition f takes the form

$$
u(x, \rho)=\frac{2^{1-s}}{\Gamma(s)}(\rho \sqrt{H})^{s} K_{s}(\rho \sqrt{H}) f(x) .
$$

Most of the properties of the solution $u(x, \rho)$ can be read off from this formula. Recall that $e^{-t H}$ is the Weyl transform of the function p_{t} on \mathbb{C}^{n} :

$$
e^{-t H}=W\left(p_{t}\right), \quad p_{t}(z)=c_{n}(\sinh t)^{-n} e^{-\frac{1}{4}(\operatorname{coth} t)|z|^{2}} .
$$

Therefore, a solution of the extension problem with initial condition f takes the form

$$
u(x, \rho)=\frac{2^{1-s}}{\Gamma(s)}(\rho \sqrt{H})^{s} K_{s}(\rho \sqrt{H}) f(x)
$$

Most of the properties of the solution $u(x, \rho)$ can be read off from this formula. Recall that $e^{-t H}$ is the Weyl transform of the function p_{t} on \mathbb{C}^{n} :

$$
e^{-t H}=W\left(p_{t}\right), \quad p_{t}(z)=c_{n}(\sinh t)^{-n} e^{-\frac{1}{4}(\operatorname{coth} t)|z|^{2}} .
$$

Therefore, $u(x, \rho)=W\left(G_{s, \rho}\right) f(x)$ where we have defined

$$
G_{s, \rho}(z)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} p_{t}(z) t^{-s-1} d t\right)
$$

Therefore, a solution of the extension problem with initial condition f takes the form

$$
u(x, \rho)=\frac{2^{1-s}}{\Gamma(s)}(\rho \sqrt{H})^{s} K_{s}(\rho \sqrt{H}) f(x)
$$

Most of the properties of the solution $u(x, \rho)$ can be read off from this formula. Recall that $e^{-t H}$ is the Weyl transform of the function p_{t} on \mathbb{C}^{n} :

$$
e^{-t H}=W\left(p_{t}\right), \quad p_{t}(z)=c_{n}(\sinh t)^{-n} e^{-\frac{1}{4}(\operatorname{coth} t)|z|^{2}}
$$

Therefore, $u(x, \rho)=W\left(G_{s, \rho}\right) f(x)$ where we have defined

$$
G_{s, \rho}(z)=\frac{1}{4^{s} \Gamma(s)} \rho^{2 s}\left(\int_{0}^{\infty} e^{-\frac{1}{4 t} \rho^{2}} p_{t}(z) t^{-s-1} d t\right)
$$

We can get the Weyl symbol of H^{s} by taking the Fourier transform of $G_{s, \rho}$ and taking the limit of $\rho^{1-2 s} \frac{\partial}{\partial \rho} \widehat{G_{s, \rho}}(x, \xi)$.

Thanks for your attention

