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Given a positive self-adjoint operator A on a Hilbert space H let us see how we
can define the fractional powers As , s ∈ R.

The operator A has a spectral resolution

A =
∫ ∞

0
λdEλ, 〈Au, v〉 =

∫ ∞

0
λd〈Eλu, v〉

which allows us to define ϕ(A) for any bounded measurable function ϕ by

ϕ(A) =
∫ ∞

0
ϕ(λ)dEλ, 〈ϕ(A)u, v〉 =

∫ ∞

0
ϕ(λ)d〈Eλu, v〉.

In particular, when we take ϕ(λ) = e−tλ, t > 0 we get the semigroup

e−tA =
∫ ∞

0
e−tλdEλ, 〈e−tAu, v〉 =

∫ ∞

0
e−tλd〈Eλu, v〉

and we plan to use this in defining the fractional powers As .
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Consider the numerical identity, valid for λ > 0, s > 0 given by the integral

λ−s =
1

Γ(s)

∫ ∞

0
ts−1e−tλdt.

By the operational calculus, it follows that A−s for s > 0 is given by

A−s =
1

Γ(s)

∫ ∞

0

( ∫ ∞

0
e−tλdEλ

)
ts−1dt =

1

Γ(s)

∫ ∞

0
e−tAts−1dt.

In order to define As for s > 0 we proceed as follows. Integration by parts gives

λ1−s =
1

Γ(s)

∫ ∞

0
ts−1d

(
1− e−tλ

)
=

s − 1

Γ(s)

∫ ∞

0
t(s−1)−1(1− e−tλ)dt

which is valid for s > 1. Changing 1− s into s we see that for 0 < s < 1,

λs = − s

Γ(1− s)

∫ ∞

0
t−s−1(1− e−tλ)dt
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The above numerical identity allows us to define As for 0 < s < 1 by

As = − s

Γ(1− s)

∫ ∞

0
t−s−1(1− e−tA)dt.

This definition was originally given by A. V. Balakrishnan in 1960.

It is therefore clear that we can define As once we have information on the
semigroup e−tA. We now specialise to the Hermite semigroup Tt acting on
L2(Rn) which is defined by

Tt f (x) =
∫

Rn
Kt(x , y)f (y)dy , f ∈ L2(Rn)

where the kernel Kt(x , y) ∈ L2(Rn ×Rn) is explictly given by

Kt(x , y) = (2π)−n/2(sinh(2t))−n/2e
− 1

2
cosh(2t)
sinh(2t)

(|x |2+|y |2)+ 1
sinh(2t)

x ·y
.

It is easy to see that Tt is a family of bounded linear operators on L2(Rn) but a
priori it is not clear if it is a semigroup of operators.
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The semigroup property, namely Tt ◦ Tt ′ = Tt+t ′ will follow once we check the
identity

Kt+t ′(x , y) =
∫

Rn
Kt(x , z)Kt ′(z , y)dz .

This is an easy exercise: simply use the well known formula

(2π)−n/2
∫

Rn
e−

1
2 a |x |2+b x ·ydx = a−n/2 e

1
2
b2

a |y |2

valid for a > 0 and b ∈ C along with the trigonometric identities

sin(a+ b) = (sin a)(cos b) + (cos a)(sin b), sin2 a+ cos2 a = 1

valid for all complex values of a and b.

Thus Tt is indeed a semigroup. It is also easy to show directly that it is a
contraction:

‖Tt f ‖2 ≤ e−nt‖f ‖2.
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From the general theory of semigroups, it follows that Tt f = e−tH f where the
infinitesimal generator H is given by

−Hf (x) = limt→0 t
−1(Tt f (x)− f (x)) =

d

dt

∣∣
t=0

Tt f (x).

The operator H can be explicitly calculated. To do so, let us rewrite Tt as a
pseudo-differential operator:

Tt f (x) = (2π)−n/2
∫

Rn
e i x ·ξ at(x , ξ) f̂ (ξ) dξ

where f̂ (ξ) is the Fourier transform of f defined by

f̂ (ξ) = (2π)−n/2
∫

Rn
e−i x ·ξ f (x) dx .

Recalling the definition of Tt f and making use of the relation∫
Rn

ĝ(−ξ)f̂ (ξ)dξ =
∫

Rn
g(y)f (y)dy

we obtain the following:
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ĝ(−ξ)f̂ (ξ)dξ =
∫

Rn
g(y)f (y)dy

we obtain the following:

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 6 / 38



From the general theory of semigroups, it follows that Tt f = e−tH f where the
infinitesimal generator H is given by

−Hf (x) = limt→0 t
−1(Tt f (x)− f (x)) =

d

dt

∣∣
t=0

Tt f (x).

The operator H can be explicitly calculated. To do so, let us rewrite Tt as a
pseudo-differential operator:

Tt f (x) = (2π)−n/2
∫

Rn
e i x ·ξ at(x , ξ) f̂ (ξ) dξ

where f̂ (ξ) is the Fourier transform of f defined by

f̂ (ξ) = (2π)−n/2
∫

Rn
e−i x ·ξ f (x) dx .

Recalling the definition of Tt f and making use of the relation∫
Rn
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Tt f (x) =
∫

Rn
K̂t(x ,−ξ)f̂ (ξ) dξ =

∫
Rn

Kt(x , y) f (y)dy .

By calculating the Fourier transform of Kt(x , y) in the second set of variables, the
above gives

Tt f (x) = (2π cosh(2t))−n/2
∫

Rn
e−

1
2 tanh(2t)(|x |2+|ξ|2)+i(cosh(2t))−1x ·ξ f̂ (ξ)dξ.

Calculating the derivative of the above at t = 0 we see that

d

dt

∣∣
t=0

Tt f (x) = (2π)−n/2
∫

Rn
e ix ·ξ(|x |2 + |ξ|2)f̂ (ξ)dξ = (−∆ + |x |2)f (x).

Thus the infinitesimal generator of the semigroup Tt is the simple harmonic
oscillator Hamiltonian H = −∆ + |x|2 also known as the Hermite operator.

From now onwards we will write e−tH in place of Tt and call it the Hermite
semigroup. Thus

e−tH f (x) =
∫

Rn
Kt(x , y)f (y)dy .
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As an integral operator with kernel Kt ∈ L2(Rn ×Rn) the operators e−tH are
compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in
the spectrum of e−tH for ant t > 0.

Suppose for some t > 0 there exists f ∈ L2(Rn) such that e−tH f = f . Then by
the semigroup property e−ktH f = f for any positive integer k. In view of the
estimate

‖Tkt f ‖2 ≤ e−nkt‖f ‖2
by letting k → ∞ we obtain f = 0.

If ck (t) > 0 is the k-th eigenvalue of e−tH then, once again from the semigroup
property, it follows that ck (t)ck (s) = ck (t + s) and hence ck (t) = e−tλk where
λk increases to infinity as k tends to infinity.

We write the spectral decomposition of e−tH as

e−tH f =
∞

∑
k=0

e−tλkPk f

where Pk are finite dimensional projections of L2(Rn) onto the k-th eigenspace
with eigenvalue ck (t).
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If ck (t) > 0 is the k-th eigenvalue of e−tH then, once again from the semigroup
property, it follows that ck (t)ck (s) = ck (t + s) and hence ck (t) = e−tλk where
λk increases to infinity as k tends to infinity.

We write the spectral decomposition of e−tH as

e−tH f =
∞

∑
k=0

e−tλkPk f

where Pk are finite dimensional projections of L2(Rn) onto the k-th eigenspace
with eigenvalue ck (t).
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It then follows that the spectral decomposition of H is given by

Hf =
∞

∑
k=0

λkPk f , f =
∞

∑
k=0

Pk f

where Pk f is orthogonal to Pj f for k 6= j and the series converges in the norm.

The Plancherel theorem for the above expansion reads as∫
Rn
|f (x)|2dx =

∞

∑
k=0

‖Pk f ‖2k .

Suppose dk is the dimension of the k-th eigenspace. By calculating the trace of
e−tH in two different ways we get

∞

∑
k=0

dk e
−tλk =

∫
Rn

Kt(x , x)dx = (2π)−n/2(sinh(2t))−n/2
∫

Rn
e−(tanh t)|x |

2
dx .

The integral in the previous equation can be evaluated leading to the identity

∞

∑
k=0

dk e
−tλk = (sinh(2t))−n/2(2 tanh t)−n/2 = (2 sinh t)−n = e−nt(1− e−2t)−n.

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 9 / 38



It then follows that the spectral decomposition of H is given by

Hf =
∞

∑
k=0

λkPk f , f =
∞

∑
k=0

Pk f

where Pk f is orthogonal to Pj f for k 6= j and the series converges in the norm.

The Plancherel theorem for the above expansion reads as∫
Rn
|f (x)|2dx =

∞

∑
k=0

‖Pk f ‖2k .

Suppose dk is the dimension of the k-th eigenspace. By calculating the trace of
e−tH in two different ways we get

∞

∑
k=0

dk e
−tλk =

∫
Rn

Kt(x , x)dx = (2π)−n/2(sinh(2t))−n/2
∫

Rn
e−(tanh t)|x |

2
dx .

The integral in the previous equation can be evaluated leading to the identity

∞

∑
k=0

dk e
−tλk = (sinh(2t))−n/2(2 tanh t)−n/2 = (2 sinh t)−n = e−nt(1− e−2t)−n.

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 9 / 38



It then follows that the spectral decomposition of H is given by

Hf =
∞

∑
k=0

λkPk f , f =
∞

∑
k=0

Pk f

where Pk f is orthogonal to Pj f for k 6= j and the series converges in the norm.

The Plancherel theorem for the above expansion reads as∫
Rn
|f (x)|2dx =

∞

∑
k=0

‖Pk f ‖2k .

Suppose dk is the dimension of the k-th eigenspace. By calculating the trace of
e−tH in two different ways we get

∞

∑
k=0

dk e
−tλk =

∫
Rn

Kt(x , x)dx = (2π)−n/2(sinh(2t))−n/2
∫

Rn
e−(tanh t)|x |

2
dx .

The integral in the previous equation can be evaluated leading to the identity

∞

∑
k=0

dk e
−tλk = (sinh(2t))−n/2(2 tanh t)−n/2 = (2 sinh t)−n = e−nt(1− e−2t)−n.

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 9 / 38



It then follows that the spectral decomposition of H is given by

Hf =
∞

∑
k=0

λkPk f , f =
∞

∑
k=0

Pk f

where Pk f is orthogonal to Pj f for k 6= j and the series converges in the norm.

The Plancherel theorem for the above expansion reads as∫
Rn
|f (x)|2dx =

∞

∑
k=0

‖Pk f ‖2k .

Suppose dk is the dimension of the k-th eigenspace. By calculating the trace of
e−tH in two different ways we get

∞

∑
k=0

dk e
−tλk =

∫
Rn

Kt(x , x)dx = (2π)−n/2(sinh(2t))−n/2
∫

Rn
e−(tanh t)|x |

2
dx .

The integral in the previous equation can be evaluated leading to the identity

∞

∑
k=0

dk e
−tλk = (sinh(2t))−n/2(2 tanh t)−n/2 = (2 sinh t)−n = e−nt(1− e−2t)−n.

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 9 / 38



Thus we have the following identity:

∞

∑
k=0

dke
−t(λk−n) = (1− e−2t)−n.

Expanding the right hand side in powers of e−2t we obtain

∞

∑
k=0

dk e
−t(λk−n) =

∞

∑
k=0

(k + n− 1)!
(n− 1)!k !

e−2tk .

Using induction, we can conclude that λk = (2k + n) and dk = (k+n−1)!
(n−1)!k ! . Since

#{α ∈Nn : |α| = k} = (k + n− 1)!
(n− 1)!k !

it is natural to index the various eigenfunctions of H corresponding to the
eigenvalue λk = (2k + n) using multi-indices α with |α| = k.
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Thus for each α ∈Nn we let Φα stand for an eigenfunction with eigenvalue
(2|α|+ n). We normalise them so that they form an orthonormal basis for the
Hilbert space L2(Rn). We then have

Pk f = ∑
|α|=k

〈f , Φα〉Φα, f = ∑
α∈Nn

〈f , Φα〉Φα.

The functions Φα are the normalised Hermite functions and they can be

calculated explicitly. For example, when ϕ(x) = e−
1
2 |x |2 the formula for e−tH as a

pseudo-differential operator gives us

Tt ϕ(x) = (2π)−n/2 e
− 1

2 tanh(2t)|x |2

(cosh(2t))n/2

∫
Rn

e−
1
2 tanh(2t)|ξ|2+i(cosh(2t))−1x ·ξe−

1
2 |ξ|2dξ.

Using 1 + tanh(2t) = e2t(cosh(2t))−1 we can evaluate the integral obtaining

e−tH ϕ = e−nt ϕ. As d0 = 1 it follows that Φ0(x) = c0e
− 1

2 |x |2 .
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It can be shown that for every α ∈Nn the function Φα(x) = cαHα(x)e−
1
2 |x |2

where Hα is a polynomial of degree |α|. From this it follows that all Φα ∈ S(Rn),
the class of Schwartz functions on Rn.

Recall that a function f ∈ L2(Rn) is Schwartz if and only if xα∂βf ∈ L2(Rn) for
all α, β ∈Nn. There is a very useful description of S(Rn) in terms of the Hermite
operator. For j = 1, 2, ..., n let us define the following first order differential
operators

Aj =
∂

∂xj
+ xj , A∗j = − ∂

∂xj
+ xj .

In terms of these ’annihilation’ and ’creation’ operators we can express H as

H =
1

2

n

∑
j=1

(
AjA

∗
j + A∗j Aj

)
.

It then follows that xα∂βf ∈ L2(Rn) for all α, β ∈Nn if and only if
Hk f ∈ L2(Rn) for all k ∈N. Thus we have a new definition of S(Rn).
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Moreover, the topology of S(Rn) is given by the increasing family of norms

‖f ‖2(2m) = ∑
α∈Nn

(2|α|+ n)2m|〈f , Φα〉|2 = ‖Hmf ‖22.

If Λ : S(Rn)→ C is a tempered distribution, then it follows that for some
m ∈N we have

|(Λ, ϕ)| ≤ C‖ϕ‖(2m), ϕ ∈ S(Rn).

As Φα ∈ S(Rn) it follows that |(Λ, Φα)| ≤ C (2|α|+ n)m and hence the series

∑
α∈Nn

(2|α|+ n)−2m−n−1|(Λ, Φα)|2

converges. (This is due to the easily verifiable estimate dk ≤ c(2k + n)n−1.)

Thus it makes sense to introduce the following subspaces of S ′(Rn): for any
s ∈ R we define

W s,2
H (Rn) = {f ∈ S ′(Rn) : ‖f ‖(s) < ∞}

where
‖f ‖2(s) = ∑

α∈Nn

(2|α|+ n)s |(f , Φα)|2, f ∈ S ′(Rn)
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Observe that S(Rn) ⊂ W s,2
H (Rn) for any s and W s,2

H (Rn) ⊂ L2(Rn) for s ≥ 0.

Moreover, W s,2
H (Rn) ⊂ W t,2

H (Rn) for t < s and every f ∈ S ′(Rn) for some s.

S(Rn) = ∩s∈RW
s,2
H (Rn), S ′(Rn) = ∪s∈RW

s,2
H (Rn).

These are known as Hermite-Sobolev spaces; they are Hilbert spaces when
equipped with the inner product

〈f , g〉s = ∑
α∈Nn

(2|α|+ n)s (f , Φα) (g , Φα).

Note that for any f ∈ W s,2
H (Rn) and g ∈ W−s,2

H (Rn) the series

〈f , g〉 = ∑
α∈Nn

(f , Φα) (g , Φα)

and the duality bracket satisfies the estimate

|〈f , g〉| ≤ ‖f ‖(s) ‖g‖(−s).

Thus the dual of W s,2
H (Rn) can be identified with W−s,2

H (Rn) for any s ∈ R.

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 14 / 38



Observe that S(Rn) ⊂ W s,2
H (Rn) for any s and W s,2

H (Rn) ⊂ L2(Rn) for s ≥ 0.

Moreover, W s,2
H (Rn) ⊂ W t,2

H (Rn) for t < s and every f ∈ S ′(Rn) for some s.

S(Rn) = ∩s∈RW
s,2
H (Rn), S ′(Rn) = ∪s∈RW

s,2
H (Rn).

These are known as Hermite-Sobolev spaces; they are Hilbert spaces when
equipped with the inner product

〈f , g〉s = ∑
α∈Nn

(2|α|+ n)s (f , Φα) (g , Φα).

Note that for any f ∈ W s,2
H (Rn) and g ∈ W−s,2

H (Rn) the series

〈f , g〉 = ∑
α∈Nn

(f , Φα) (g , Φα)

and the duality bracket satisfies the estimate

|〈f , g〉| ≤ ‖f ‖(s) ‖g‖(−s).

Thus the dual of W s,2
H (Rn) can be identified with W−s,2

H (Rn) for any s ∈ R.

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 14 / 38



Observe that S(Rn) ⊂ W s,2
H (Rn) for any s and W s,2

H (Rn) ⊂ L2(Rn) for s ≥ 0.

Moreover, W s,2
H (Rn) ⊂ W t,2

H (Rn) for t < s and every f ∈ S ′(Rn) for some s.

S(Rn) = ∩s∈RW
s,2
H (Rn), S ′(Rn) = ∪s∈RW

s,2
H (Rn).

These are known as Hermite-Sobolev spaces; they are Hilbert spaces when
equipped with the inner product

〈f , g〉s = ∑
α∈Nn

(2|α|+ n)s (f , Φα) (g , Φα).

Note that for any f ∈ W s,2
H (Rn) and g ∈ W−s,2

H (Rn) the series

〈f , g〉 = ∑
α∈Nn

(f , Φα) (g , Φα)

and the duality bracket satisfies the estimate

|〈f , g〉| ≤ ‖f ‖(s) ‖g‖(−s).

Thus the dual of W s,2
H (Rn) can be identified with W−s,2

H (Rn) for any s ∈ R.

S. Thangavelu (IISc) Holomorphic extensions 21-26, June 2021 14 / 38



For s > 0 the members of W s,2
H (Rn) are just L2 functions but when s is large,

they could be regular. To see this, we consider the associated Hermite series

f (x) = ∑
α∈Nn

〈f , Φα〉Φα(x)

which converges to f in the L2 norm, but need not converge pointwise in general.

However, by applying Cauchy-Schwarz and making use of the fact that
f ∈ W s,2

H (Rn) we obtain

|f (x)|2 ≤ ‖f ‖2(s)
(

∑
α∈Nn

(2|α|+ n)−s(Φα(x))
2
)

.

Thus we infer that the formal expansion of f converges pointwise provided

∑
α∈Nn

(2|α|+ n)−s(Φα(x))
2 < ∞.

To determine the values of s for which the above happens, we bring in the kernel
Kt(x , y) into play.
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Expanding Kt(x , ·) in terms of Φα and using e−tHΦα = e−(2|α|+n)tΦα we get

Kt(x , y) = ∑
α∈Nn

e−(2|α|+n)t Φα(x)Φα(y).

It then follows that

∑
α∈Nn

(2|α|+ n)−s(Φα(x))
2 =

1

Γ(s)

∫ ∞

0
Kt(x , x) ts−1dt.

As the kernel Kt(x , x) is known explicitly, the integral above becomes

(2π)−n/2 1

Γ(s)

∫ ∞

0
(sinh(2t))−n/2e− tanh(2t)|x |2 ts−1dt.

As tanh(2t) increases to 1 and sinh(2t) behaves like e2t as t tends to infinity,

the integral taken over [1, ∞) converges and bounded independent of x .

However, sinh(2t) behaves like 2t near zero and hence the integral over (0, 1) is
finite and bounded if and only if s > n/2.
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Thus we have proved the following Sobolev embedding theorem: for s > n/2,

W s,2
H (Rn) ⊂ Cb(R

n), ‖f ‖∞ ≤ C‖f ‖(s).

With some more work we can also prove the following: for s > m+ n/2,

W s,2
H (Rn) ⊂ Cm

b (Rn), ∑
|α|≤m

‖∂αf ‖∞ ≤ C‖f ‖(s).

The embedding theorem we have just proved simply means that for s > n/2, the
operator H−s/2 : L2(Rn)→ L∞(Rn) is bounded. It is also known- not easy to
see quickly- that for any s > 0,H−s/2 : Lp(Rn)→ Lp(Rn) is bounded for all
1 < p < ∞.

An analytic interpolation argument will then prove that for any 0 < s < n/2,
H−s/2 : Lp(Rn)→ Lq(Rn), 1

p −
1
q ≤

s
n is bounded for 1 < p ≤ q < ∞.
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We now study some invariance properties of the spaces W s,2
H (Rn). The standard

Sobolev spaces W s,2(Rn) defined in terms of (1− ∆)s/2 are invariant under
translations τy f (x) = f (x + y) for any y ∈ Rn.

This is immediate since (1− ∆)s/2τy = τy (1− ∆)s/2 which is a consequence of
the fact that ∆, as a differential operator with constant coefficients, commutes
with τy .

Even though H = −∆ + |x |2 does not commute with τy , the spaces W s,2
H (Rn)

turn out to be translation invariant. This is a priori not clear and we provide a
proof now.

The Hermite-Sobolev spaces W s,2
H (Rn) have an important invariance property not

shared by W s,2(Rn), namely they are invariant under the Fourier transform.

This is a consequence of the fact that Hermite functions are eigenfunctions of the
Fourier transform:

Φ̂α(ξ) = (−i)|α|Φα(ξ).
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Recall that f ∈ W s,2
H (Rn) if and only if

∑
α∈Nn

(2|α|+ n)−s |〈f , Φα〉|2 < ∞

and our claim is immediate as

|〈f̂ , Φα〉| = |〈f , Φ̂α〉| = |〈f , Φα〉|.

We will show that τy : W s,2
H (Rn)→ W s,2

H (Rn) is bounded and satisfies

‖τy f ‖(s) ≤ C (1 + |y |2)s/2‖f ‖(s).

As W s,2
H (Rn) is invariant under Fourier transform it is enough to show that

‖ey f ‖(s) ≤ C (1 + |y |2)s/2‖f ‖(s), ey f (ξ) = e iy ·ξ f (ξ).
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A simple calculation shows that

e−iy ·ξH(ey f )(ξ) = Hf (ξ) + |y |2f (ξ) + i
n

∑
j=1

yj
∂

∂ξj
f (ξ).

If we let p(y , ∂) = i ∑n
j=1 yj

∂
∂ξj

we can write the above as

e−1y Hey = H + p(y , ∂) + |y |2.

By defining P(y) = p(y , ∂)H−1 + |y |2H−1, the above relation gives

e−1y Hey = H + P(y)H, e−1y Hmey = (H + P(y)H)m.

We claim that the operator P(y) is bounded on L2(Rn) and satisfies

‖P(y)f ‖2 ≤ c(1 + |y |2)‖f ‖2.

We assume this for the time being and proceed.
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e−1y Hey = H + p(y , ∂) + |y |2.

By defining P(y) = p(y , ∂)H−1 + |y |2H−1, the above relation gives

e−1y Hey = H + P(y)H, e−1y Hmey = (H + P(y)H)m.

We claim that the operator P(y) is bounded on L2(Rn) and satisfies

‖P(y)f ‖2 ≤ c(1 + |y |2)‖f ‖2.

We assume this for the time being and proceed.
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By expanding (H + P(y)H)m and using the boundedness of P(y) on L2(Rn) we
get

‖Hmey f ‖2 = ||e−1y Hmey f ‖2 ≤ C (1 + |y |2)m‖Hmf ‖2.

Our result for s = 2m,m ∈N follows from the above estimate. To prove the
general case we use a bit of complex analysis in the form of Hadamard’s three
lines lemma.

First observe that for any complex ζ = s + it, s, t ∈ R we can define Hζ by

Hζ f = ∑
α∈Nn

(2|α|+ n)ζ 〈f , Φα〉Φα

where the series converges in L2(Rn) whenever f ∈ W 2s,2
H (Rn). Also note that

H it : W s,2
H (Rn)→ W s,2

H (Rn) is an isometry for any t ∈ R.

When f ∈ W 2a,2
H (Rn), a > 0 the map ζ → Hζ f is an L2(Rn) valued holomorphic

function on the strip Sa = {ζ : 0 < |Re(ζ)| < a}. If g ∈ L2(Rn) then the map
ζ → 〈Hζ f , g〉 is holomorphic on Sa and continuous upto the boundary.
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Given f , g ∈ S(Rn), y ∈ Rn consider the function defined on S1 by

Fm(ζ) = 〈Hm+ζτyH
−m−ζ f , g〉.

This is clearly holomorphic on S1, continuous and bounded on the closed strip.

As H−m−ζ f ∈ W
2(m+s),2
H (Rn) the boundedness of τy on W 2m,2

H (Rn) and

W
2(m+1),2
H (Rn) shows that

|Fm(it)| ≤ C0(y)‖f ‖2‖g‖2, |Fm(1 + it)| ≤ C1(y)‖f ‖2‖g‖2

where Cj (y) ≤ C (1 + |y |2)m+j .

The three lines lemma applied to Fm proves that for 0 < s < 1 we have

|Fm(s + it)| ≤ C0(y)
1−sC1(y)

s‖f ‖2 ‖g‖2.

This simply means that Hm+sτyH
m−s is bounded on L2(Rn) and we have the

following estimate.
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‖Hm+sτyH
−m−s f ‖2 ≤ C (1 + |y |2)m+s ‖f ‖2

which translates into our claim, namely

‖Hm+s(τy f )‖2 ≤ C (1 + |y |2)m+s‖Hm+s f ‖2.

We are still left with proving that the operator

P(y) = p(y , ∂)H−1 + |y |2H−1, p(y , ∂) = i
n

∑
j=1

yj
∂

∂ξj

is bounded on L2(Rn). As both H−1 and H−1/2 are bounded, it is enough to
consider the operator p(y , ∂)H−1/2.

Let us define the following operators Aj and their adjoints A∗j and express p(y , ∂)
in terms of them.

Aj =
∂

∂ξj
+ ξj , A∗j = − ∂

∂ξj
+ ξj , 2

∂

∂ξj
= Aj − A∗j .
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It is therefore enough to prove L2 boundedness of the operators

Rj = AjH
−1/2, R∗j = A∗j H

−1/2.

These are called Riesz transforms associated to the Hermite operator.

A simple calculation shows that

H =
1

2

n

∑
j=1

(
AjA

∗
j + A∗j Aj

)
, I =

1

2

n

∑
j=1

(
H−1/2AjR

∗
j +H−1/2A∗j Rj

)
.

As Aj and A∗j are adjoints of each other, from the above identity we get

‖f ‖22 =
1

2

n

∑
j=1

(
‖R∗j f ‖22 + ‖Rj f ‖22

)
.

The boundedness of the Riesz transforms are immediate. They are also known to
be bounded on Lp(Rn) for any 1 < p < ∞.
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We continue with our study of the fractional powers H−s for s > 0. Recall that
the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

e−tH f (x) = (2π)−n/2
∫

Rn
e i x ·ξ a′t(x , ξ) f̂ (ξ) dξ.

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.

We can rewrite the above in the Weyl calculus in a slightly different form as

e−tH f (ξ) = (2π)−n
∫

R2n
e i(ξ−η)·yat

( ξ + η

2
, y
)
f (η)dydη

where the symbol at(x , y) is also explicitly known.

As H−s is given in terms of e−tH we get a similar representation for H−s whose
symbol is given by

bs(x , y) =
1

Γ(s)

∫ ∞

0
at(x , y)ts−1dt.
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Weyl pseudo-differential operators occur naturally in connection with Fourier
transform on the Heisenberg group.

Without getting into technicalities, consider the following family of operators

π(z)ϕ(ξ) = e i(x ·ξ+
1
2 x ·y )ϕ(x+ y), z = x + iy ∈ Cn, ϕ ∈ L2(Rn).

It is clear that π(z) are unitary operators on L2(Rn) for each z ∈ Cn.

To each F ∈ L1(Cn) we can associate a bounded linear operator W (F ) by

W (F )ϕ(ξ) =
∫

R2n
F (x , y)π(x + iy)ϕ(ξ)dxdy .

W (F ) is called the Weyl transform of F which is an integral operator whose

kernel is given by

KF (ξ, η) =
∫

Rn
e

i
2 x ·(ξ+η)F (x , ξ − η)dx = F̃ (

ξ + η

2
, η − ξ)

where F̃ (ξ, y) is the inverse Fourier transform of F in the first set of variables.
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If we let a stand for the full Fourier transform of F in both variables, then

W (F )ϕ(ξ) = (2π)−n
∫

R2n
e i(ξ−η)·yat

( ξ + η

2
, y
)

ϕ(η)dydη

For e−tH the kernel is explicitly known. By a simple calculation we can write

e−tH = W (pt), pt(z) = cn(sinh t)−ne−
1
4 (coth t)|z |2 .

The Weyl symbol of e−tH is obtained by taking the Fourier transform of pt(z) on

R2n. Thus
at(x , ξ) = cn(cosh t)−ne−(tanh t)(|x |

2+|ξ|2).

The Weyl symbol of H−s is then given by the integral

bs(x , ξ) = cn
1

Γ(s)

∫ ∞

0
(cosh t)−ne−(tanh t)(|x |

2+|ξ|2) ts−1 dt.
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When s = 1 the Weyl symbol of H−1 has a very simple expression. Indeed, a
change of variables in the above formula gives

b1(x , ξ) = cn

∫ 1

0
(1− t2)n/2−1e−t(|x |

2+|ξ|2)dt.

In the case when n = 2m is even, we can evaluate the integral explicitly. To see

this, let us expand (1− t2)m−1 to get

b1(x , ξ) = cn
m−1
∑
j=0

(m+ j − 1)!
j !(m− 1)!

(−1)j
( ∫ (|x |2+|ξ|2)

0
t2je−tdt

)
(|x |2 + |ξ|2)−2j−1.

We still need to evaluate the integral
∫ a
0 t2je−tdt. Let pj stand for the Taylor

polynomials of e−t . Then we can easily prove that

1

j !

∫ a

0
t je−tdt = 1− e−apj (a).

Thus we have the following result first proved by Cappiello, Rodino and Toft by

a different method.
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The Weyl symbol of H−1 on R2n is given by

b1(x , ξ) = cn
n−1
∑
j=0

(n+ j − 1)!
j !(n− 1)!

(−1)j (2j)!
1− p2j (|x |2 + |ξ|2)e−(|x |

2+|ξ|2)

(|x |2 + |ξ|2)2j+1
.

In their paper, they have also proved the following estimates on the symbol
b1(x , ξ) : there exits a constant C > 0 such that for all α ∈N2n and r ∈ [0, 1]

|∂α
x,ξb1(x , ξ)| ≤ C |α|+1(α!)(1+r )/2(|x |2 + |ξ|2)−1−(r/2)|α|.

Using the representation we have obtained, we can prove similar estimates for
bs(x , ξ) for 0 < s ≤ 1 in any dimension. More precisely we prove:

|∂α
x,ξbs(x , ξ)| ≤ C |α|+1(α!)(1+r )/2(|x |2 + |ξ|2)−s−(r/2)|α|.

We need to recall several properties of the Hermite polynomials. Recall that the

Hermite polynomials on R are defined by
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Hk (t) = (−1)k e−t
2 dk

dtk
e−t

2
.

The multi-dimensional Hermite functions Hα(x), α ∈Nn, x ∈ Rn are defined by
taking tensor products. Thus Hα(x , ξ) on R2n are given by

Hα(x , ξ)e−(|x |
2+|ξ|2) = (−1)|α|∂α

x,ξe
−(|x |2+|ξ|2), .

The normalised Hermite functions Φα(x , ξ) on R2n are defined by

Φα(x , ξ) = (2|α|α!πn)−1/2 Hα(x , ξ)e−
1
2 (|x |2+|ξ|2).

We will make use of the fact that Φα ∈ L∞(R2n) and ‖Φα‖∞ ≤ C uniformly in α
in estimating the derivatives of bs(x , ξ).
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Recall that we have proved the following formula for the Weyl symbol of H−s :

bs(x , ξ) = cn,s

∫ ∞

0
(cosh t)−ne−(tanh t)(|x |

2+|ξ|2) ts−1 dt.

Differentiating the above and recalling the definition of the Hermite polynomials

we see that ∂α
x,ξbs(x , ξ) is given by

cn,s

∫ ∞

0
(cosh t)−n(

√
tanh t)|α| Hα((

√
tanh t)(x , ξ) e−(tanh t)(|x |

2+|ξ|2) ts−1 dt.

As Φα are uniformly bounded, ∂α
x,ξbs(x , ξ) is estimated by

Cn,s(2
|α|α!)1/2

∫ ∞

0
ts−1 (cosh t)−n(

√
tanh t)|α| e−

1
2 (tanh t)(|x |2+|ξ|2) dt.

In order to estimate the above, we rewrite the integral as follows:

I =
∫ ∞

0

n

∏
j=1

t(s−1)/n (cosh t)−1(
√

tanh t)αj e−
1
2n (tanh t)(|x |2+|ξ|2) dt.
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we see that ∂α
x,ξbs(x , ξ) is given by

cn,s

∫ ∞

0
(cosh t)−n(

√
tanh t)|α| Hα((

√
tanh t)(x , ξ) e−(tanh t)(|x |

2+|ξ|2) ts−1 dt.

As Φα are uniformly bounded, ∂α
x,ξbs(x , ξ) is estimated by

Cn,s(2
|α|α!)1/2

∫ ∞

0
ts−1 (cosh t)−n(

√
tanh t)|α| e−

1
2 (tanh t)(|x |2+|ξ|2) dt.

In order to estimate the above, we rewrite the integral as follows:

I =
∫ ∞

0

n

∏
j=1

t(s−1)/n (cosh t)−1(
√

tanh t)αj e−
1
2n (tanh t)(|x |2+|ξ|2) dt.
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Applying generalised Holder’s inequality, we estimate I ≤ ∏n
j=1 I

1/n
j where

Ij =
∫ ∞

0
ts−1 (cosh t)−n(

√
tanh t)nαj e−

1
2 (tanh t)(|x |2+|ξ|2) dt.

As tanh t behaves like t for small values of t and is dominated by t for t ≥ 1 and

since s − 1 < 0 we can dominate the above integral by

Jj =
∫ ∞

0
(tanh t)s−1 (cosh t)−n(

√
tanh t)nαj e−

1
2 (tanh t)(|x |2+|ξ|2) dt.

By making the change of variables tanh t → t we are led to estimate

Jj = c
∫ 1

0
t
n
2 αj+s−1 (1− t2)n/2−1 e−

1
2 t(|x |2+|ξ|2) dt.

Under the extra assumption that n ≥ 2 we can neglect the factor (1− t2)n/2−1

and get the trivial estimate

Jj ≤ C (|x|2 + |ξ|2)−s , I ≤ C (|x|2 + |ξ|2)−s .
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Dominating Jj by a gamma integral and evaluating the same we also get

Jj ≤ CΓ(s +
n

2
αj )(|x |2 + |ξ|2)−

n
2 αj−s .

By a simple application of Stirling’s formula for the gamma function we get

Jj ≤ C αj (αj !)n/2(|x |2 + |ξ|2)−
n
2 αj−s , I ≤ C |α|(α!)1/2(|x |2 + |ξ|2)−

1
2 |α|−s .

Recalling that |∂α
x,ξbs(x , ξ)| ≤ C (2|α|α!)1/2 I we have proved the following

estimates:
|∂α

x,ξbs(x , ξ)| ≤ C |α|(α!)1/2(|x |2 + |ξ|2)−s .

|∂α
x,ξbs(x , ξ)| ≤ C |α|(α!)(|x |2 + |ξ|2)−

1
2 |α|−s .

For any r ∈ [0, 1], by writing

|∂α
x,ξbs(x , ξ)| = |∂α

x,ξbs(x , ξ)|1−r |∂α
x,ξbs(x , ξ)|r

and using the above estimates, we prove the result.
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There is yet another way of realising the fractional powers via the so called
extension problem associated to the Hermite operator.

For 0 < s < 1 we consider the initial value problem on Rn ×R+:

( ∂2

∂ρ2
+

1− 2s

ρ

∂

∂ρ
)u(x , ρ) = Hu(x , ρ), limρ→0 u(x , ρ) = f (x)

where f ∈ L2(Rn) and the limit is taken in the L2(Rn) norm.

A solution of the above problem is explicitly given by

u(x , ρ) =
1

4sΓ(s)
ρ2s

∫ ∞

0
e−

1
4t ρ2e−tH f (x) t−s−1 dt.

Indeed, it is very easy to verify that u(x , ρ) defined above satisfies the initial value
problem. Simply use the fact that

( ∂2

∂ρ2
+

1 + 2s

ρ

∂

∂ρ
)
(
t−s−1e−

1
4t ρ2
)
=

∂

∂t

(
t−s−1e−

1
4t ρ2
)
.
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The initial condition is verified by making a change of variables and writing

u(x , ρ) =
1

4sΓ(s)

∫ ∞

0
e−

1
4t e−tρ2H f (x) t−s−1 dt.

The connection between u(x , ρ) and Hs f is brought out by the following analysis.

−ρ1−2s
∂

∂ρ
u(x , ρ) =

2

4sΓ(s)
ρ2(1−s)

∫ ∞

0
e−

1
4t e−tρ2HHf (x) t(1−s)−1 dt.

This, after a change of variables gives

−ρ1−2s
∂

∂ρ
u(x , ρ) =

2

4sΓ(s)

∫ ∞

0
e−

1
4t ρ2e−tHHf (x) t(1−s)−1 dt.

By taking the limit and noting that the integral converges to Γ(1− s)H1−sHf we
obtain

−ρ1−2s
∂

∂ρ
u(x , ρ) = 21−2s

Γ(1− s)

Γ(s)
Hs f .
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When we take Pk f , f as the initial condition, as e−tHPk f = e−t(2k+n)Pk f , the
solution of the extension problem takes the form

uk (x , ρ) =
1

4sΓ(s)
ρ2s
( ∫ ∞

0
e−

1
4t ρ2e−t(2k+n) t−s−1 dt

)
Pk f (x).

By making a change of variables we see that uk (x , ρ) = ms((2k + n)ρ2)Pk f (x)
where

ms((2k + n)ρ2) =
1

4sΓ(s)
((2k + n)ρ2)s

( ∫ ∞

0
e−

1
4t (2k+n)ρ2e−t t−s−1 dt

)
.

The above integral can be evaluated in terms of MacDonald function Ks(r):

Ks(r) = 2−s−1r s
∫ ∞

0
e−

1
4t r

2
e−t t−s−1 dt.

Thus we have

ms((2k + n)ρ2) =
21−s

Γ(s)
(
√
(2k + n)ρ)sKs(

√
(2k + n)ρ).
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4t r

2
e−t t−s−1 dt.

Thus we have
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Therefore, a solution of the extension problem with initial condition f takes the
form

u(x , ρ) =
21−s

Γ(s)
(ρ
√
H)sKs(ρ

√
H)f (x).

Most of the properties of the solution u(x , ρ) can be read off from this formula.

Recall that e−tH is the Weyl transform of the function pt on Cn:

e−tH = W (pt), pt(z) = cn(sinh t)−ne−
1
4 (coth t)|z |2 .

Therefore, u(x , ρ) = W (Gs,ρ)f (x) where we have defined

Gs,ρ(z) =
1

4sΓ(s)
ρ2s
( ∫ ∞

0
e−

1
4t ρ2pt(z) t

−s−1 dt
)

.

We can get the Weyl symbol of Hs by taking the Fourier transform of Gs,ρ and

taking the limit of ρ1−2s ∂
∂ρ Ĝs,ρ(x , ξ).
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Thanks for your attention
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