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Given a positive self-adjoint operator A on a Hilbert space H let us see how we
can define the fractional powers A®, s € R.
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Given a positive self-adjoint operator A on a Hilbert space H let us see how we
can define the fractional powers A®, s € R.

The operator A has a spectral resolution
(o) ()
A= / AdEy, (Au,v) = /O Ad(Eyu, v)
0

which allows us to define ¢(A) for any bounded measurable function ¢ by

o(A) = [ odEr, (9(A)u,v) = [~ @()d(Eru,v).
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Given a positive self-adjoint operator A on a Hilbert space H let us see how we
can define the fractional powers A®, s € R.

The operator A has a spectral resolution

A:/o AdE,, <Au,v>:/0 Ad(Eyu, v)

which allows us to define ¢(A) for any bounded measurable function ¢ by

o(A) = [ odEr, (9(A)u,v) = [~ @()d(Eru,v).

In particular, when we take cp()\) = eft’\, t > 0 we get the semigroup

eftA:/ e M dE,, <e7tAu,v):/ e M d(Eyu, v)
0 0

and we plan to use this in defining the fractional powers A°.
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Consider the numerical identity, valid for A > 0,s > 0 given by the integral

1 o)
AT = —/ 5 le A gt
I'(s) Jo

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 3/38



Consider the numerical identity, valid for A > 0,s > 0 given by the integral

1 o)
ATS = —/ s letA g,
I(s) Jo

By the operational calculus, it follows that A= for s > 0 is given by

1 o0 o0 1 o0
AS = —/ / e TNE) V5 1dt = / e syt
r(s) 0 ( 0 A) F(s) 0
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Consider the numerical identity, valid for A > 0,s > 0 given by the integral

1 o)
ATS = —/ s letA g,
I(s) Jo

By the operational calculus, it follows that A= for s > 0 is given by

1 o0 o0 1 o0
AS = —/ / e TNE) V5 1dt = / e syt
r(s) 0 ( 0 A) T(S) 0

In order to define A® for s > 0 we proceed as follows. Integration by parts gives

s _ L [ a0 oy ST [y,
A _T(s)/o 7 d(1—e )_F(s)/o t (1—e ")dt

which is valid for s > 1. Changing 1 — s into s we see that for 0 < s < 1,
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Consider the numerical identity, valid for A > 0,s > 0 given by the integral

1 o)
ATS = —/ s letA g,
I(s) Jo

By the operational calculus, it follows that A= for s > 0 is given by

1 o0 o0 1 o0
AS = —/ / e TNE) V5 1dt = / e syt
r(s) 0 ( 0 A) T(S) 0

In order to define A® for s > 0 we proceed as follows. Integration by parts gives

s _ L [ a0 oy ST [y,
A _T(s)/o 7 d(1—e )_F(s)/o t (1—e ")dt

which is valid for s > 1. Changing 1 — s into s we see that for 0 < s < 1,

s © _
Asz_m/o 57 11— e Mat
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The above numerical identity allows us to define A® for 0 < s < 1 by

R

This definition was originally given by A. V. Balakrishnan in 1960.
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The above numerical identity allows us to define A® for 0 < s < 1 by

S

A8 /000 t757 (1 — e ™)t

This definition was originally given by A. V. Balakrishnan in 1960.

A= —

It is therefore clear that we can define A once we have information on the

semigroup e~ *A. We now specialise to the Hermite semigroup T; acting on
L?(R") which is defined by
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The above numerical identity allows us to define A® for 0 < s < 1 by

A° = 71_‘(1;_5)‘/0 t_s_l(]. — e_tA)dt.

This definition was originally given by A. V. Balakrishnan in 1960.

It is therefore clear that we can define A once we have information on the

semigroup e~ *A. We now specialise to the Hermite semigroup T; acting on
L?(R") which is defined by

Tf(x) = [ Kebey)f()dy, £ € 2(R7)

where the kernel K¢(x,y) € L2(R" x R") is explictly given by

Ki(x,y) = (271)7"/2(sinh(2t))*”/2e_%cs?::gtt)) “XHWHM”K
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The above numerical identity allows us to define A® for 0 < s < 1 by

A° = 71_‘(1;_5)‘/0 t_s_l(]. — e_tA)dt.

This definition was originally given by A. V. Balakrishnan in 1960.

It is therefore clear that we can define A® once we have information on the
semigroup e~ *A. We now specialise to the Hermite semigroup T; acting on
L?(R") which is defined by

Tf(x) = [ Kebey)f()dy, £ € 2(R7)

where the kernel K¢(x,y) € L2(R" x R") is explictly given by

Ki(x,y) = (270)~"2(sinh(2t)) /2™ Star (<4102 ey

It is easy to see that T; is a family of bounded linear operators on L2(IR") but a
priori it is not clear if it is a semigroup of operators.
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The semigroup property, namely T; o Ty = T, will follow once we check the
identity

Kevoly) = [ Ke(x2)Ke(2,y)dz
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The semigroup property, namely T; o Ty = T, will follow once we check the
identity

Kevoly) = [ Ke(x2)Ke(2,y)dz

This is an easy exercise: simply use the well known formula

1 12
(@r) /2 [ e babPrbey g — 4oz 3T
R

valid for a > 0 and b € C along with the trigonometric identities
sin(a+ b) = (sina)(cos b) + (cosa)(sin b), sin>a+cos’a =1

valid for all complex values of a and b.
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The semigroup property, namely T; o Ty = T, will follow once we check the
identity

Kevoly) = [ Ke(x2)Ke(2,y)dz

This is an easy exercise: simply use the well known formula

1 12
(@r) /2 [ e babPrbey g — 4oz 3T
R

valid for a > 0 and b € C along with the trigonometric identities
sin(a+ b) = (sina)(cos b) + (cosa)(sin b), sin>a+cos’a =1
valid for all complex values of a and b.

Thus T is indeed a semigroup. It is also easy to show directly that it is a
contraction:
I Tefll2 < e [|f]]2.
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From the general theory of semigroups, it follows that T:f = e " f where the
infinitesimal generator H is given by

—Hf (x) = lim;0 t Y(Tef (x) — f(x)) = Tef (x).

d
E’t:O
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From the general theory of semigroups, it follows that T:f = e " f where the
infinitesimal generator H is given by

_HF(x) = limg o tH(TeF (x) — F(x)) = %!t:o ToF(x).

The operator H can be explicitly calculated. To do so, let us rewrite T; as a
pseudo-differential operator:

Tef(x) = (m) ™2 [ &€ an(x,8) F(¢) o

where (&) is the Fourier transform of f defined by
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From the general theory of semigroups, it follows that T:f = e " f where the
infinitesimal generator H is given by

_HF(x) = limg o tH(TeF (x) — F(x)) = %!t:o ToF(x).

The operator H can be explicitly calculated. To do so, let us rewrite T; as a
pseudo-differential operator:

Tef(x) = (2m) "2 [ &S ai(x,8) F(¢) de
]Rn
where (&) is the Fourier transform of f defined by

7(2) = (2m) /2 [ e F(x) dx.

n
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From the general theory of semigroups, it follows that T:f = e " f where the
infinitesimal generator H is given by

_HF(x) = limg o tH(TeF (x) — F(x)) = %!t:o ToF(x).

The operator H can be explicitly calculated. To do so, let us rewrite T; as a
pseudo-differential operator:

Tef(x) = (2m) "2 [ &S ai(x,8) F(¢) de
]Rn
where (&) is the Fourier transform of f defined by

7(2) = (2m) /2 [ e F(x) dx.

n

Recalling the definition of T:f and making use of the relation

[ e0f@dz= [ gy

we obtain the following:
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Tef(x) = [ Relx ~07 (@) de = [ Kelxy) F(¥)db.

By calculating the Fourier transform of K:(x, y) in the second set of variables, the
above gives
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Tef(x) = [ Relx ~07 (@) de = [ Kelxy) F(¥)db.

By calculating the Fourier transform of K:(x, y) in the second set of variables, the
above gives

T.f(x) = (27 cosh(2t))7"/2/ ef%tanh(2t)(|X\2+|§|2)+i(cosh(2t))*1x~§f(§)d§_

n
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Tef(x) = [ Relx=0F@) de = [ Kelxy) F(y)dy.

By calculating the Fourier transform of K:(x, y) in the second set of variables, the
above gives

T.f(x) = (27 cosh(2t))7"/2/ ef%tanh(2t)(|X\2+|§|2)+i(cosh(2t))*1x~§f(€)d€_

n
Calculating the derivative of the above at t = 0 we see that

d

SilecoTef 00 = @) ™72 [ &¥(x? + 18P (@)dz = (~a+ x)F ().

Thus the infinitesimal generator of the semigroup T; is the simple harmonic
oscillator Hamiltonian H = —A 4 |x|? also known as the Hermite operator.
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Tef(x) = [ Relx=0F@) de = [ Kelxy) F(y)dy.

By calculating the Fourier transform of K:(x, y) in the second set of variables, the
above gives

T.f(x) = (27 cosh(2t))7"/2/ ef%tanh(2t)(|X\2+|§|2)+i(cosh(2t))*1x~§f(€)d€_

n
Calculating the derivative of the above at t = 0 we see that

d

SilecoTef 00 = @) ™72 [ &¥(x? + 18P (@)dz = (~a+ x)F ().

Thus the infinitesimal generator of the semigroup T; is the simple harmonic
oscillator Hamiltonian H = —A 4 |x|? also known as the Hermite operator.

From now onwards we will write e~ in place of T; and call it the Hermite
semigroup. Thus

e tHf(x) = /]R" Ki(x,y)f(y)dy.
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As an integral operator with kernel K; € L?(R" x R") the operators et are

compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in
the spectrum of et for ant t > 0.
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As an integral operator with kernel K; € L2(]R” x IR™) the operators et are

compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in
the spectrum of et for ant t > 0.

Suppose for some t > 0 there exists f € L2(IR") such that e"*Hf = f. Then by
the semigroup property e X" = f for any positive integer k. In view of the

estimate
| Thef[l2 < e ™ |f |2

by letting k — oo we obtain f = 0.
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As an integral operator with kernel K; € L2(]R” x IR™) the operators et are

compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in
the spectrum of et for ant t > 0.

Suppose for some t > 0 there exists f € L2(IR") such that e"*Hf = f. Then by
the semigroup property e X" = f for any positive integer k. In view of the
estimate

[ Thefll2 < e ™| f]2

by letting k — oo we obtain f = 0.

If ck(t) > 0 is the k-th eigenvalue of e~ M then, once again from the semigroup
property, it follows that cx(t)ck(s) = cx(t +s) and hence ¢, (t) = e~ where
Ak increases to infinity as k tends to infinity.
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As an integral operator with kernel K; € L2(]R” x IR™) the operators et are

compact and normal (actually, Hilbert-Schmidt). We first claim that 1 is not in
the spectrum of et for ant t > 0.

Suppose for some t > 0 there exists f € L2(IR") such that e"*Hf = f. Then by
the semigroup property e X" = f for any positive integer k. In view of the

estimate
| Thef[l2 < e ™ |f |2

by letting k — oo we obtain f = 0.

If ck(t) > 0 is the k-th eigenvalue of e~ M then, once again from the semigroup
property, it follows that cx(t)ck(s) = cx(t +s) and hence ¢, (t) = e~ where
Ak increases to infinity as k tends to infinity.

tH

We write the spectral decomposition of e as

o
e Hf =Y e tMpf
k=0

where Py are finite dimensional projections of L?(IR") onto the k-th eigenspace
with eigenvalue ¢ (t).
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It then follows that the spectral decomposition of H is given by

Hf = Y APif, £=Y Pif
k=0 k=0

where Pyf is orthogonal to P;f for k # j and the series converges in the norm.
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It then follows that the spectral decomposition of H is given by

Hf = Y APif, £=Y Pif
k=0 k=0

where Pyf is orthogonal to P;f for k # j and the series converges in the norm.

The Plancherel theorem for the above expansion reads as

[ 1FG0 2 = Y- (1Pt
R k=0

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 9/38



It then follows that the spectral decomposition of H is given by

Hf = Y APif, £=Y Pif
k=0 k=0

where Pyf is orthogonal to P;f for k # j and the series converges in the norm.

The Plancherel theorem for the above expansion reads as

[ 1FG0 2 = Y- (1Pt
R k=0

Suppose dj is the dimension of the k-th eigenspace. By calculating the trace of
et in two different ways we get

Y et :/ Ke(x, x)dx = (2n)*"/2(sinh(2t))*"/2/ e~ (Enh 6)xP? g
k:O Rn n
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It then follows that the spectral decomposition of H is given by
Hf = Y APif, £=Y Pif
k=0 k=0

where Pyf is orthogonal to P;f for k # j and the series converges in the norm.

The Plancherel theorem for the above expansion reads as

[ 1FG0 2 = Y- (1Pt
R k=0

Suppose dj is the dimension of the k-th eigenspace. By calculating the trace of
et in two different ways we get

Y et :/ Ke(x, x)dx = (2n)*"/2(sinh(2t))*"/2/ e~ (Enh 6)xP? g
k:O Rn n

The integral in the previous equation can be evaluated leading to the identity

dy e M = (Sinh(2t)>7n/2(2tanh t)fn/z = (2sinht) ™" = e (1~ eizt)in'
k=0
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Thus we have the following identity:

dee th=n) — (1 — =2t)n
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Thus we have the following identity:

Z dke /\k n) _ (1_6721')7

2t

Expanding the right hand side in powers of e~<! we obtain

0 — |
(Ae—n) _ (k+n—=1)! _ou
Zd"e kgo CEDI
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Thus we have the following identity:

Z dke /\k n) (1 _ ef2t)7n

Expanding the right hand side in powers of e 2t we obtain

= (k+n-—11 _
d )\k n — ( 2tk_
2 ke kgo (n—1)tk! ©

Using induction, we can conclude that A, = (2k + n) and dj = % Since
(k+n—1)!
n . = k = -
o € N al =k} = Z7 =y

it is natural to index the various eigenfunctions of H corresponding to the
eigenvalue Ay = (2k + n) using multi-indices a with |a| = k.
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Thus for each &« € IN” we let ®, stand for an eigenfunction with eigenvalue
(2|a| 4+ n). We normalise them so that they form an orthonormal basis for the
Hilbert space L2(IR"). We then have
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Thus for each &« € IN” we let ®, stand for an eigenfunction with eigenvalue
(2|a| 4+ n). We normalise them so that they form an orthonormal basis for the
Hilbert space L2(IR"). We then have

P.f = Z (f, @)Dy, = Z (f, @y ) Dy.
|a|=k a€IN"
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Thus for each &« € IN” we let ®, stand for an eigenfunction with eigenvalue
(2|a| 4+ n). We normalise them so that they form an orthonormal basis for the
Hilbert space L2(IR"). We then have

Pif = Y (f, @)@y, f= Y (f Pu)Py.
|| =k S\

The functions ®, are the normalised Hermite functions and they can be

.. 1
calculated explicitly. For example, when ¢(x) = e~ 2IXI” the formula for et as a
pseudo-differential operator gives us

1 tanh(2t)|x|?

Tip(x) = (271)*”/246(7 NCTVCE / e*%tanh(2t)|§\2+i(cosh(2t))’1x-§ef%|§|2dg
cos n R
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Thus for each &« € IN” we let ®, stand for an eigenfunction with eigenvalue
(2|a| 4+ n). We normalise them so that they form an orthonormal basis for the
Hilbert space L2(IR"). We then have

Pif = Y (f, @)@y, f= Y (f Pu)Py.
|| =k S\

The functions ®, are the normalised Hermite functions and they can be

.. 1
calculated explicitly. For example, when ¢(x) = e~ 2IXI” the formula for e~
pseudo-differential operator gives us

tH 35 a

) ef% tanh(2t)|x|?

Tep(x) = (2m)~" / o3 tanh(20)¢+i(cosh(2t) g o~ 3127 gz

(cosh(2t))/2 Jr

Using 1+ tanh(2t) = e?t(cosh(2t))~! we can evaluate the integral obtaining
e tHp=e g As dy =1 it follows that P (x) = cge~ 2z X,
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It can be shown that for every & € IN” the function @, (x) = cyHa (x)e*%‘x‘2
where H, is a polynomial of degree |a|. From this it follows that all ®, € S(R"),

the class of Schwartz functions on IR".

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 12/38



It can be shown that for every & € IN” the function @, (x) = cyHa (x)e*%‘x‘z
where H, is a polynomial of degree |a|. From this it follows that all ®, € S(R"),

the class of Schwartz functions on IR".

Recall that a function f € L?(R") is Schwartz if and only if x*dff € L?(IR") for
all a, B € IN". There is a very useful description of S(R") in terms of the Hermite
operator.
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It can be shown that for every & € IN” the function @, (x) = cyHa (x)e*%‘x‘2
where H, is a polynomial of degree |a|. From this it follows that all ®, € S(R"),

the class of Schwartz functions on IR".

Recall that a function f € L?(R") is Schwartz if and only if x*dff € L?(IR") for
all a, B € IN". There is a very useful description of S(R") in terms of the Hermite
operator. For j = 1,2, ..., n let us define the following first order differential
operators

0 d
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It can be shown that for every & € IN” the function @, (x) = cyHa (x)e*%‘x‘2
where H, is a polynomial of degree |a|. From this it follows that all ®, € S(R"),

the class of Schwartz functions on IR".

Recall that a function f € L?(R") is Schwartz if and only if x*dff € L?(IR") for
all a, B € IN". There is a very useful description of S(R") in terms of the Hermite
operator. For j = 1,2, ..., n let us define the following first order differential
operators

0 0
\j dx; + X5, Aj %

In terms of these 'annihilation’ and 'creation’ operators we can express H as

+ X;.

n
EAN+N)
j:
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It can be shown that for every & € IN” the function @, (x) = cyHa (x)e*%‘x‘2
where H, is a polynomial of degree |a|. From this it follows that all ®, € S(R"),

the class of Schwartz functions on IR".

Recall that a function f € L?(R") is Schwartz if and only if x*dff € L?(IR") for
all a, B € IN". There is a very useful description of S(R") in terms of the Hermite
operator. For j = 1,2, ..., n let us define the following first order differential
operators

0 d

In terms of these 'annihilation’ and 'creation’ operators we can express H as
n
EAN+N)

It then follows that x*0ff € L2(R") for all &, B € IN" if and only if
HXf € [2(IR") for all k € IN. Thus we have a new definition of S(IR").
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Moreover, the topology of S(IR") is given by the increasing family of norms

1Fl1Smy = Y (lal+n)?"[(f, ®u)[*> = [HTf[3.
aceIN"
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Moreover, the topology of S(IR") is given by the increasing family of norms

1Fl1Smy = Y (lal+n)?"[(f, ®u)[*> = [HTf[3.
aceIN"

If A: S(R") — C is a tempered distribution, then it follows that for some
m € IN we have

(A @) < Cllollom). ¢ € SR?).
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Moreover, the topology of S(IR") is given by the increasing family of norms

1Fl1Smy = Y (lal+n)?"[(f, ®u)[*> = [HTf[3.
aceIN"

If A: S(R") — C is a tempered distribution, then it follows that for some
m € IN we have

[(A @)l < Cliellom). ¢ € SIRT).
As @, € S(IR") it follows that |(A, ®,)| < C(2|a| + n)™ and hence the series
Y, (2laf+n) 72 (A, @) 2
acN"?

converges. (This is due to the easily verifiable estimate dj < c(2k + n)""1.)
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Moreover, the topology of S(IR") is given by the increasing family of norms

1Fl1Smy = Y (lal+n)?"[(f, ®u)[*> = [HTf[3.
aceIN"

If A: S(R") — C is a tempered distribution, then it follows that for some
m € IN we have

[(A @)l < Cliellom). ¢ € SIRT).
As @, € S(IR") it follows that |(A, ®,)| < C(2|a| + n)™ and hence the series
Y, (2laf+n) 72 (A, @) 2
acN"?

converges. (This is due to the easily verifiable estimate dj < c(2k + n)""1.)

Thus it makes sense to introduce the following subspaces of S’'(IR"): for any
s € R we define

W (R") = {f € S'(R") : |[f]|(5) < o0}
where
117 = Y (lal+n)°|(F, @)%, f € S'(R")

aceN"
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Observe that S(IR") C W?(IR") for any s and W5?(R") C L2(R") for s > 0.
Moreover, W,f,‘2(lR”) C W,f,’z(]R") for t < s and every f € S'(R") for some s.

S(R") = NeerW*(R"), S'(R") = User W% (R").
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Observe that S(IR") C W?(IR") for any s and W5?(R") C L2(R") for s > 0.
Moreover, W,f,‘2(lR”) C W,f,’z(]R") for t < s and every f € S'(R") for some s.

S(R") = NeerW*(R"), S'(R") = User W% (R").

These are known as Hermite-Sobolev spaces; they are Hilbert spaces when
equipped with the inner product

(F.8)s = L (Clal-+n)* (7, 90) (5. 20).
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Observe that S(IR") C W?(IR") for any s and W5?(R") C L2(R") for s > 0.
Moreover, W,f,‘2(lR”) C W,f,’z(]R") for t < s and every f € S'(R") for some s.

S(R") = NeerW*(R"), S'(R") = User W% (R").

These are known as Hermite-Sobolev spaces; they are Hilbert spaces when
equipped with the inner product

(F.8)s = L (Clal-+n)* (7, 90) (5. 20).

Note that for any f € W5?(R") and g € W, =%(IR") the series

(f.g)= Z (f, D) (g, Pa)

aeN"

and the duality bracket satisfies the estimate
I e)| < |Iflls) llgll(=s)-

Thus the dual of W,Z‘z(lR”) can be identified with W,f’z(]R”) for any s € R.
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For s > 0 the members of W,f,’z(]R”) are just L2 functions but when s is large,
they could be regular. To see this, we consider the associated Hermite series

f(x) = 2 (F, @y )Py (x)

aeIN"

which converges to f in the L2 norm, but need not converge pointwise in general.
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For s > 0 the members of W,f,’z(]R”) are just L2 functions but when s is large,
they could be regular. To see this, we consider the associated Hermite series

f(x) = 2 (F, @y )Py (x)

aeIN"

which converges to f in the L2 norm, but need not converge pointwise in general.

However, by applying Cauchy-Schwarz and making use of the fact that
fe W,f,'z(IR”) we obtain

FOR < IFI2) (X @lal+n)~*(@a(x))?).

acN”
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For s > 0 the members of W,f,’z(]R”) are just L2 functions but when s is large,
they could be regular. To see this, we consider the associated Hermite series

f(x) = 2 (F, @y )Py (x)

aeIN"

which converges to f in the L2 norm, but need not converge pointwise in general.

However, by applying Cauchy-Schwarz and making use of the fact that
fe W,f,'z(IR”) we obtain

FOR < IFI2) (X @lal+n)~*(@a(x))?).

acIN?
Thus we infer that the formal expansion of f converges pointwise provided

Y (2fal 4 n) " (@u(x))? < oo
acIN"
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For s > 0 the members of W,f,’z(]R”) are just L2 functions but when s is large,
they could be regular. To see this, we consider the associated Hermite series

f(x) = 2 (F, @y )Py (x)

aeIN"

which converges to f in the L2 norm, but need not converge pointwise in general.
However, by applying Cauchy-Schwarz and making use of the fact that
fe W,f,'z(IR”) we obtain

FOR < IFI2) (X @lal+n)~*(@a(x))?).

acN”

Thus we infer that the formal expansion of f converges pointwise provided

Y (2fal 4 n) " (@u(x))? < oo
acIN"

To determine the values of s for which the above happens, we bring in the kernel
K:(x,y) into play.
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2|al+n)

Expanding K:(x, -) in terms of ®, and using e tHd, = e~ td, we get

Ke(x,y) =) e~ CllEMt @ (x) Dy (y).
a€N"?

It then follows that
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2|al+n)

Expanding K:(x, -) in terms of ®, and using e tHd, = e~ td, we get

Ke(x,y) =) e~ CllEMt @ (x) Dy (y).

aeIN"
It then follows that
1 00
2la| + n) 7 (Dy(x 2:—/ Ke(x, x) t5 Ldt.
L Rlal 4 )@ = gy [ Kl
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2|al+n)

Expanding K:(x, -) in terms of ®, and using e tHd, = e~ td, we get

Ki(x,y) = 2 ef(z‘“H”)tCIDa(x) D, (y).
aeIN"

It then follows that

Y (el + ) ¥ (@a(x))? =

ooK x,x) 5 Ldt.
aeN" (S) /0 t( )

As the kernel K:(x, x) is known explicitly, the integral above becomes

(2m) /2 L / (sinh(2t)) ~"/2e~ tanh@Ol sy,
0

I'(s)
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—(2[a+n)

Expanding K;(x, ) in terms of ®, and using e"tH®, = e td, we get

Ki(x,y) = 2 ef(z‘“H”)tCIDa(x) D, (y).
aeIN"

It then follows that

Y (el + ) ¥ (@a(x))? =

ooK x,x) 5 Ldt.
aeN" (S) /0 t( )

As the kernel K:(x, x) is known explicitly, the integral above becomes

(2m)~"/2 r(ls) /0 " (sinh(2t)) /2~ tanh(20)x ps—1gy

As tanh(2t) increases to 1 and sinh(2t) behaves like €%t as t tends to infinity,

the integral taken over [1,00) converges and bounded independent of x.
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—(2[a+n)

Expanding K;(x, ) in terms of ®, and using e"tH®, = e td, we get

Ke(x,y) = Y e ClriEnt @, (x) @y (y).
aceIN"

It then follows that

Y (el + ) ¥ (@a(x))? =

ooK x,x) 5 Ldt.
aeN" (S) /0 t( )

As the kernel K:(x, x) is known explicitly, the integral above becomes
1 0 2
27 ‘”/2—/ sinh(2t)) ™"/ 2~ tanh(20)|x|® ys—1 41
(2m) "2 5 [ sinn(21)
As tanh(2t) increases to 1 and sinh(2t) behaves like €%t as t tends to infinity,

the integral taken over [1,00) converges and bounded independent of x.

However, sinh(2t) behaves like 2t near zero and hence the integral over (0, 1) is
finite and bounded if and only if s > n/2.
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Thus we have proved the following Sobolev embedding theorem: for s > n/2,

Wi (R") € Go(R"), ||flleo < CIIFll(s).
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Thus we have proved the following Sobolev embedding theorem: for s > n/2,
2
Wi (R") C G(R7), [[flleo < ClIfll(s)-

With some more work we can also prove the following: for s > m+ n/2,

Wi (R") € C(R™), ) 0% lleo < ClIfl(s)-

la|<m
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Thus we have proved the following Sobolev embedding theorem: for s > n/2,
2
Wi (R") € Cp(R), [[flleo < ClIf|l(s)-
With some more work we can also prove the following: for s > m+ n/2,
2
W5"(R") C C5'(R"), | IZ [0%F[leo < ClIfll(s)-
al<m

The embedding theorem we have just proved simply means that for s > n/2, the
operator H=5/2: [2(R") — L®(R") is bounded. It is also known- not easy to
see quickly- that for any s > 0, H5/2: [P(R") — LP(RR") is bounded for all
1< p<oo.
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Thus we have proved the following Sobolev embedding theorem: for s > n/2,
2
Wi (R") € Cp(R), [[flleo < ClIf|l(s)-
With some more work we can also prove the following: for s > m+ n/2,
2
W5"(R") C C5'(R"), | IZ [0%F[leo < ClIfll(s)-
al<m

The embedding theorem we have just proved simply means that for s > n/2, the
operator H=5/2: [2(R") — L®(R") is bounded. It is also known- not easy to
see quickly- that for any s > 0, H5/2: [P(R") — LP(RR") is bounded for all
1< p<oo.

An analytic interpolation argument will then prove that for any 0 < s < n/2,

H=s/2: [P(R") — L9(R"), % - % < 2 is bounded for 1 < p < g < co.
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We now study some invariance properties of the spaces W,f,’z(lR”). The standard

Sobolev spaces W*2(IR") defined in terms of (1 — A)*/2 are invariant under
translations 7, f(x) = f(x + y) for any y € R".
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We now study some invariance properties of the spaces W,f,’z(lR”). The standard

Sobolev spaces W*2(IR") defined in terms of (1 — A)*/2 are invariant under
translations 7, f(x) = f(x + y) for any y € R".

This is immediate since (1 — A)$/?t, = 1, (1 — A)%/? which is a consequence of
the fact that A, as a differential operator with constant coefficients, commutes
with T,.
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We now study some invariance properties of the spaces W,f,’z(lR”). The standard

Sobolev spaces W*2(IR") defined in terms of (1 — A)*/2 are invariant under
translations 7, f(x) = f(x + y) for any y € R".

This is immediate since (1 — A)$/?t, = 1, (1 — A)%/? which is a consequence of
the fact that A, as a differential operator with constant coefficients, commutes
with T,.

Even though H = —A + |x|? does not commute with T,, the spaces Wlf,’z(]R”)
turn out to be translation invariant. This is a priori not clear and we provide a
proof now.
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We now study some invariance properties of the spaces W,f,’z(lR”). The standard

Sobolev spaces W*2(IR") defined in terms of (1 — A)*/2 are invariant under
translations 7, f(x) = f(x + y) for any y € R".

This is immediate since (1 — A)$/?t, = 1, (1 — A)%/? which is a consequence of
the fact that A, as a differential operator with constant coefficients, commutes
with T,.

Even though H = —A + |x|? does not commute with T,, the spaces Wlf,’z(]R”)
turn out to be translation invariant. This is a priori not clear and we provide a
proof now.

The Hermite-Sobolev spaces W,f,’z(]R") have an important invariance property not
shared by W*2(IR"), namely they are invariant under the Fourier transform.
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We now study some invariance properties of the spaces W,f,’z(lR”). The standard
Sobolev spaces W*2(IR") defined in terms of (1 — A)*/2 are invariant under
translations 7, f(x) = f(x + y) for any y € R".

This is immediate since (1 — A)$/21, = 7, (1 — A)*/2 which is a consequence of
the fact that A, as a differential operator with constant coefficients, commutes
with T,.

Even though H = —A + |x|? does not commute with T,, the spaces Wlf,’z(]R”)
turn out to be translation invariant. This is a priori not clear and we provide a
proof now.

The Hermite-Sobolev spaces W,f,’z(]R") have an important invariance property not
shared by W*2(IR"), namely they are invariant under the Fourier transform.

This is a consequence of the fact that Hermite functions are eigenfunctions of the
Fourier transform:

Dy (&) = (—i) ", ().
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Recall that f € WS (IR") if and only if

Y. (2lal+n)[(f, Do) [* < oo
aceN"

and our claim is immediate as

[(F.®a)| = [(F, Da)| = | {F, Du)l.
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Recall that f € WS (IR") if and only if

Y. (2lal+n)[(f, Do) [* < oo
aceN"

and our claim is immediate as

[(F.®a)| = [(F, Da)| = | {F, Du)l.

We will show that Ty, : W,f,’z(lR”) — W,f,’z(IR”) is bounded and satisfies

It flls) < CL+ Iy )2 flls).
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Recall that f € WS (IR") if and only if

Y. (2lal+n)[(f, Do) [* < oo
aceN"

and our claim is immediate as

[(F.®a)| = [(F, Da)| = | {F, Du)l.

We will show that T, : W,j’z(lR”) — W,f,’z(IR”) is bounded and satisfies

It flls) < CL+ Iy )2 flls).

As W,f,‘z(lR”) is invariant under Fourier transform it is enough to show that

leyflls) < C+IyI2)2Ufll(s) ef(E) =< ().

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 19/38



A simple calculation shows that

e VCH(e, f)(&) = HF(E) + |y|f (& +'Zyjagj
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A simple calculation shows that
e H(eyf)(§) = HF(E) +IyI*F (¢ +'Zyja§
J

If we let p(y,0) = i)} 4 yja%_ we can write the above as

e, He, = H+p(y,d) + |y|>.
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A simple calculation shows that
e Y CH(eyf)(§) = HF(E) + |y I*F () +i Zyjag
J

If we let p(y,0) =i} 4 yja%_ we can write the above as

ey He, = H+p(y,d) + |y >
By defining P(y) = p(y,d)H~1 + |y|>H~!, the above relation gives

e, 1He, = H+ P(y)H, e, H™e, = (H+ P(y)H)™
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A simple calculation shows that
e Y CH(eyf)(§) = HF(E) + |y I*F () +i Zyjag
J

If we let p(y,0) =i} 4 yja%_ we can write the above as

e, LHe, = H+p(y,0) + |y
By defining P(y) = p(y,d)H~1 + |y|>H~!, the above relation gives
e, 1He, = H+ P(y)H, e, H™e, = (H+ P(y)H)™
We claim that the operator P(y) is bounded on L?(IR") and satisfies
IPO)fll2 < (X + Iy P)IIf 2.

We assume this for the time being and proceed.
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By expanding (H + P(y)H)™ and using the boundedness of P(y) on L?(R") we
get
IH™eyfll2 = |le, 'H™eyflla < C(L+ |y )™ |[H™f]l2.
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By expanding (H + P(y)H)™ and using the boundedness of P(y) on L?(R") we
get

IH™eyfll2 = [ley " H™ey fll2 < C(1+ [y|*)™|[H™F] 2.
Our result for s = 2m, m € IN follows from the above estimate. To prove the
general case we use a bit of complex analysis in the form of Hadamard’s three
lines lemma.
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By expanding (H + P(y)H)™ and using the boundedness of P(y) on L?(R") we
get
IH™eyfll2 = |le, 'H™eyflla < C(L+ |y )™ |[H™f]l2.

Our result for s = 2m, m € IN follows from the above estimate. To prove the
general case we use a bit of complex analysis in the form of Hadamard’s three
lines lemma.

First observe that for any complex { = s+ it, s, t € R we can define H¢ by

HEf = Y (2fa] + n)f (F, @) D,
aceIN"

where the series converges in L2(IR") whenever f € Wﬁs’z(]R”). Also note that
Hit: WE2(R™) — W2 (R") is an isometry for any t € R.
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By expanding (H + P(y)H)™ and using the boundedness of P(y) on L?(R") we
get
IH™eyfll2 = |le, 'H™eyflla < C(L+ |y )™ |[H™f]l2.

Our result for s = 2m, m € IN follows from the above estimate. To prove the
general case we use a bit of complex analysis in the form of Hadamard’s three
lines lemma.

First observe that for any complex { = s+ it, s, t € R we can define H¢ by

HEf = Y (2fa] + n)f (F, @) D,
aceIN"

where the series converges in L2(IR") whenever f € Wﬁs’z(]R”). Also note that
Hit: WE2(R™) — W2 (R") is an isometry for any t € R.

When f € WE,a'Z(R”), a > 0 the map { — Hf is an L?(IR") valued holomorphic

function on the strip S, = {Z: 0 < |Re()| < a}. If g € L?(IR") then the map
— <H§f,g> is holomorphic on S, and continuous upto the boundary.
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By expanding (H + P(y)H)™ and using the boundedness of P(y) on L?(R") we
get
IH™eyfll2 = |le, 'H™eyflla < C(L+ |y )™ |[H™f]l2.

Our result for s = 2m, m € IN follows from the above estimate. To prove the
general case we use a bit of complex analysis in the form of Hadamard’s three
lines lemma.

First observe that for any complex { = s+ it, s, t € R we can define H¢ by

HEf = Y (2fa] + n)f (F, @) D,
aceIN"

where the series converges in L2(IR") whenever f € Wﬁs’z(]R”). Also note that
Hit: WE2(R™) — W2 (R") is an isometry for any t € R.

When f € WE,a'Z(R”), a > 0 the map { — Hf is an L?(IR") valued holomorphic

function on the strip S, = {Z: 0 < |Re()| < a}. If g € L?(IR") then the map
— <H§f,g> is holomorphic on S, and continuous upto the boundary.
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Given f,g € S(R"),y € R" consider the function defined on S; by
Fm(C) = <Hm+€TyHim7§f:g>-

This is clearly holomorphic on Sq, continuous and bounded on the closed strip.
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Given f,g € S(R"),y € R" consider the function defined on S; by
Fm(C) = <Hm+€TyHim7§f:g>-
This is clearly holomorphic on Sq, continuous and bounded on the closed strip.

As H-m=Ef € WA )% (Rn) the boundedness of T, on W2™2(IR") and
Wfl(mﬂ)'z(l[{") shows that

|Fm(it)] < Co(y)lIfll2llgll2 [Fm (L +it)] < Cily)lIfll2llgll2

where Ci(y) < C(1+ |y|?)™H.
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Given f,g € S(R"),y € R" consider the function defined on S; by

Fn(Q) = (H™ 1, H=m¢f g).

This is clearly holomorphic on Sq, continuous and bounded on the closed strip.

As H-m=Ef € WA )% (Rn) the boundedness of T, on W2™2(IR") and
Wfl(mﬂ)'z(l[{") shows that

|Fm(it)] < Q) IIfll2llgll2, [Fm(1+it)] < Ci(y)IIfll2llgll2
where Cj(y) < C(1+ |y[?)™H.

The three lines lemma applied to F,, proves that for 0 < s < 1 we have

|Fn(s +it)] < G C(y)°lI 12 llgll2-
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Given f,g € S(R"),y € R" consider the function defined on S; by
Fm(C) = <Hm+€TyHim7§f:g>-
This is clearly holomorphic on Sq, continuous and bounded on the closed strip.

As H-m=Ef € WA )% (Rn) the boundedness of T, on W2™2(IR") and
Wfl(mﬂ)'z(l[{") shows that

|Fm(it)] < Q) IIfll2llgll2, [Fm(1+it)] < Ci(y)IIfll2llgll2
where Cj(y) < C(1+ |y[?)™H.

The three lines lemma applied to F,, proves that for 0 < s < 1 we have

|Fn(s +it)] < G C(y)°lI 12 llgll2-

This simply means that H™+57, H™ =% is bounded on L?(IR") and we have the
following estimate.
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IH™ 55, Hm2F |l < C(L+ |y )™ || ]2

which translates into our claim, namely

IH™ = (5 )l < C(L+ [y[2) ™= | H™ 5 2.
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IH™ 55, Hm2F |l < C(L+ |y )™ || ]2

which translates into our claim, namely
[H™5 (1 F)]l2 < C(1+ |y[?) ™| HTHF 2.

We are still left with proving that the operator

0

P(y) = p(y,0)H +yPHY, p(y,0) =i ) yj=r
379G

is bounded on L2(R"). As both H~! and H~1/2 are bounded, it is enough to
consider the operator p(y,d)H1/2.
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IH™ 55, Hm2F |l < C(L+ |y )™ || ]2

which translates into our claim, namely
[H™5 (1 F)]l2 < C(1+ |y[?) ™| HTHF 2.

We are still left with proving that the operator

0

P(y) = P(}/:a)Hfl + |y\2H*1, p(y,0) =i Z:yjf
j=1 J

is bounded on L2(R"). As both H~! and H~1/2 are bounded, it is enough to
consider the operator p(y,d)H1/2.

Let us define the following operators A; and their adjoints Aj’f and express p(y, d)
in terms of them.

S S A S S s
A= g Th A = e TE 25 = A AL
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Let us define the following operators A; and their adjoints Aj’f and express p(y, d)
in terms of them.

S S A S S s
A= g Th A = e TE 25 = A AL

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 23 /38



IH™ 55, Hm2F |l < C(L+ |y )™ || ]2

which translates into our claim, namely
[H™5 (1 F)]l2 < C(1+ |y[?) ™| HTHF 2.

We are still left with proving that the operator

0

P(y) = P(}/:a)Hfl + |y\2H*1, p(y,0) =i Z:yjf
j=1 J

is bounded on L2(R"). As both H~! and H~1/2 are bounded, it is enough to
consider the operator p(y,d)H1/2.

Let us define the following operators A; and their adjoints Aj’f and express p(y, d)
in terms of them.

S S A S S s
A= g Th A = e TE 25 = A AL
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It is therefore enough to prove L2 boundedness of the operators
L A.y—L/2 x _ oAxpy—1/2
R; = AjH . Rf=A/H :

These are called Riesz transforms associated to the Hermite operator.
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It is therefore enough to prove L2 boundedness of the operators
L Ay L1/2 x _ pxpy—1/2
R; = AiH . Rf=A/H :
These are called Riesz transforms associated to the Hermite operator.

A simple calculation shows that

n n
= L (A A, 1= Y (W AR AR,

j=1 Jj=1

r\)\l—l
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It is therefore enough to prove L2 boundedness of the operators
L Ay L1/2 * _ pkpy—1/2
R; = AiH . R =A/H :
These are called Riesz transforms associated to the Hermite operator.
A simple calculation shows that

n n
= % Y (AT +AA), =2 ) (HTV2ARS + HTV2ATR;).

j=1 Jj=1

r\)\l—l

As A; and A;f are adjoints of each other, from the above identity we get

1 n
1713 = 3 3 (IR 718 + I1R13)
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It is therefore enough to prove L2 boundedness of the operators
L Ay L1/2 x _ pxpy—1/2
R; = AiH . R =A/H :
These are called Riesz transforms associated to the Hermite operator.
A simple calculation shows that
1

n n
=5 Zi (AAT + ATA), | Zi TLRAR + HTY2AR)).
J= J=

r\)\l—l

As A; and A;f are adjoints of each other, from the above identity we get

1 n
I£13 = 5 X (IRFF1I3 + IR;F113).
2

The boundedness of the Riesz transforms are immediate. They are also known to
be bounded on LP(IR") for any 1 < p < o0,
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We continue with our study of the fractional powers H~*° for s > 0. Recall that
the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

e () = (2m) "2 [ e al(x,0) F(2) de.

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.
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We continue with our study of the fractional powers H~*° for s > 0. Recall that
the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

e () = (2m) "2 [ e al(x,0) F(2) de.

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.

We can rewrite the above in the Weyl calculus in a slightly different form as

e’t”f(€)=(27r)’”/R2n elcmr ({;;W y)f (i) dydn

where the symbol a;(x, y) is also explicitly known.
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We continue with our study of the fractional powers H~*° for s > 0. Recall that
the Hermite semigroup is a pseudo-differential operator with an explicit symbol:

e M (x) = (2m) "2 [ e ai(x,0) F(¢) o

This representation is in the sense of Kohn-Nirenberg psudo-differential calculus.

We can rewrite the above in the Weyl calculus in a slightly different form as

(@) = " [ S Ya (ST ) ) avay

where the symbol a;(x, y) is also explicitly known.

As H=S is given in terms of e~ tH

symbol is given by

we get a similar representation for H™° whose

bs(x,y) = 1”(15) /(;oo ar(x, y)t*Ldt.
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Weyl pseudo-differential operators occur naturally in connection with Fourier
transform on the Heisenberg group.
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Weyl pseudo-differential operators occur naturally in connection with Fourier
transform on the Heisenberg group.

Without getting into technicalities, consider the following family of operators
1(2)p(g) = TPV g(x+y), z=x+iy €C", p € LX(R).

It is clear that 77(z) are unitary operators on L?(R") for each z € C".
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Weyl pseudo-differential operators occur naturally in connection with Fourier
transform on the Heisenberg group.

Without getting into technicalities, consider the following family of operators
n(z)p(g) = ei(x'5+%X'Y)(p(x+y), z=x+iy €C", ¢ € [*(R").
It is clear that 77(z) are unitary operators on L?(R") for each z € C".

To each F € L}(C") we can associate a bounded linear operator W (F) by

W(Fe(@) = [

oo PO )T i) (8 dedy.
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Weyl pseudo-differential operators occur naturally in connection with Fourier
transform on the Heisenberg group.

Without getting into technicalities, consider the following family of operators
n(z)p(g) = ei(x'5+%X'Y)(p(x+y), z=x+iy €C", ¢ € [*(R").

It is clear that 77(z) are unitary operators on L?(R") for each z € C".

To each F € L}(C") we can associate a bounded linear operator W (F) by

W(Fe(@) = [

oo PO )T i) (8 dedy.

W (F) is called the Weyl transform of F which is an integral operator whose

kernel is given by

iy +
Ke(@on) = [ e EDEGE—nyax = FES Ty 0)
where F(Z, ) is the inverse Fourier transform of F in the first set of variables.
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If we let a stand for the full Fourier transform of F in both variables, then

W(F)p(@) = )" [ D72 (11 ) g(y)ayay

R2n
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If we let a stand for the full Fourier transform of F in both variables, then

W(F)p(@) = )" [ D72 (11 ) g(y)ayay

R2n

—tH

For e the kernel is explicitly known. By a simple calculation we can write

et = W(py), pe(z) = co(sinht) e~ i(coth )izl
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If we let a stand for the full Fourier transform of F in both variables, then

W(F)p(@) = )" [ D72 (11 ) g(y)ayay

R2n

—tH

For e the kernel is explicitly known. By a simple calculation we can write

e = W(pe), pi(z) = colsinh t) e d(cctho)zl”
The Weyl symbol of et is obtained by taking the Fourier transform of pt(z) on

R2". Thus
a¢(x, &) = cp(cosh t) e~ (Eanh ) (IxI*+[]%)
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If we let a stand for the full Fourier transform of F in both variables, then

W(F)g(@) = (2r) " [ &E (T y) gl ey

tH

For e the kernel is explicitly known. By a simple calculation we can write

e = W(pe), pi(z) = colsinh t) e d(cctho)zl”
The Weyl symbol of et is obtained by taking the Fourier transform of pt(z) on

R?". Thus
ae(x, &) = cp(cosh t) e~ (R O)(xI*+[E]2)
The Weyl symbol of H™* is then given by the integral

bS(XVC) :Cn% Am(cosh t) n —(tanht)(\x|2+‘§|) s— 1dt
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When s = 1 the Weyl symbol of H~! has a very simple expression. Indeed, a
change of variables in the above formula gives

b 2) = [| (1 272 T g
0

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 28/38



When s = 1 the Weyl symbol of H~! has a very simple expression. Indeed, a
change of variables in the above formula gives

bi1(x,&) =cp /1(1 — t2)”/2_1e—t(|x\2+|é\2)dt_
0

In the case when n = 2m is even, we can evaluate the integral explicitly. To see

this, let us expand (1 — t2)™ ! to get

m-l i —1)! o r(xPER) _
bi(x, &) = cp ZO w(_l)j(/o + tZJeftdt>(|x|2—|— |§‘2)72171.
j=
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When s = 1 the Weyl symbol of H~! has a very simple expression. Indeed, a
change of variables in the above formula gives

bi1(x,&) =cp /1(1 - t2)”/2_1e—t(\x\2+|é\2)dt_
0

In the case when n = 2m is even, we can evaluate the integral explicitly. To see

this, let us expand (1 — t2)™ ! to get

m-l i —1)! o r(xPER) _
bi(x, &) = cp ZO w(_l)j(/o + tZJeftdt>(|x|2—|— |§‘2)72171.
j=

We still need to evaluate the integral foa tYetdt. Let p; stand for the Taylor

polynomials of e~t. Then we can easily prove that

1 r2
o te tdt =1—e ?pj(a).
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When s = 1 the Weyl symbol of H~! has a very simple expression. Indeed, a
change of variables in the above formula gives

1
bi(x, &) = c,,/ (1- t2)”/2_1e—t(\x\2+|é\2)dt_
0
In the case when n = 2m is even, we can evaluate the integral explicitly. To see
this, let us expand (1 — t2)™ ! to get

m-l i —1)! o r(xPER) _
bi(x, &) = cp ZO W(_l)j(/() + tZJeftdt>(|X|2—|— |§‘2)72171.
j=

We still need to evaluate the integral foa tYetdt. Let p; stand for the Taylor

polynomials of e~t. Then we can easily prove that

1 a .
o te fdt =1—e ?pj(a).
Thus we have the following result first proved by Cappiello, Rodino and Toft by
a different method.
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The Weyl symbol of H=1 on IR?" is given by

n—1 1) 1 (| x 2 + 2 —(‘X|2+‘§‘2)
bu(x8) = ¥, LT e e

Jj=0
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The Weyl symbol of H=1 on IR?" is given by

n—1 1) 1 (| x 2 + 2 —(‘X|2+‘§‘2)
bu(x8) = ¥, LT e e

Jj=0

In their paper, they have also proved the following estimates on the symbol
by (x, €) : there exits a constant C > 0 such that for all « € N?" and r € [0,1]

|a§’€b1(x, &) < C‘”‘H‘l([X!)(l-&-r)/2(|x|2+ |(—:|2)—1—(r/2)|a\_
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The Weyl symbol of H=1 on IR?" is given by

R =D o 1= eI+ [ e (KPR
b1(x,¢) —CnJ;) W( 1Y (2))! (|x]2 + |&[]2)2+T :

In their paper, they have also proved the following estimates on the symbol
by (x, €) : there exits a constant C > 0 such that for all « € N?" and r € [0,1]

|a§’€b1(x, &) < C‘”‘H‘l((X!)(l-&-r)/2(|x|2+ |(—:|2)—1—(r/2)|zx\_

Using the representation we have obtained, we can prove similar estimates for
bs(x, &) for 0 < s < 1 in any dimension. More precisely we prove:

|0% gbs(X &) < C\ocl-l—l(‘x,)(l—&-r /2(|X|2+ |§| )-s ~(r/2)la|
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The Weyl symbol of H=1 on IR?" is given by

R =D o 1= eI+ [ e (KPR
P8 =en 4y ey Y I gy

In their paper, they have also proved the following estimates on the symbol
by (x, €) : there exits a constant C > 0 such that for all « € N?" and r € [0,1]

|a§’€b1(x, &) < C‘”‘H‘l((X!)(l-&-r)/2(|x|2+ |(—:|2)—1—(r/2)|zx\_

Using the representation we have obtained, we can prove similar estimates for
bs(x, &) for 0 < s < 1 in any dimension. More precisely we prove:

|8X§bs(x &) < C\ocl-l—l(a,)(l—&-r /2(|X|2+ |§| )-s ~(r/2)la|

We need to recall several properties of the Hermite polynomials. Recall that the

Hermite polynomials on R are defined by
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k
_pd

2
dek € t

Hi(t) = (~1)%e
The multi-dimensional Hermite functions H,(x), & € IN", x € R" are defined by
taking tensor products. Thus Hy(x, &) on IR?" are given by

Ha(x, &)e (KPHIER) = (—1)lelge o= (e,
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K
_ K g2 d
Hi(t) = (=1)%e twe

2

The multi-dimensional Hermite functions H,(x), & € IN", x € R" are defined by
taking tensor products. Thus Hy(x, &) on IR?" are given by

Ha (x, &) (KPHE?) — (—1ylelge o= (x4el)

The normalised Hermite functions @, (x, &) on IR?" are defined by

Dy (x, &) = (2%ate™) 12 Hy(x, @)e 2 (XPHER)
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K
_ K g2 d
Hi(t) = (=1)%e twe

2

The multi-dimensional Hermite functions H,(x), & € IN", x € R" are defined by
taking tensor products. Thus Hy(x, &) on IR?" are given by

Hy (x, &)e~ (XPHER) = (—1)|“‘aﬁ’§e*(‘x‘2+|§‘2>, .

The normalised Hermite functions @, (x, &) on IR?" are defined by

B (x, &) = (21%alm™) V2 Hy(x, §)e 2 (KPHER),

We will make use of the fact that ®, € L*(IR?") and ||®y/cc < C uniformly in
in estimating the derivatives of bs(x, ).
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Recall that we have proved the following formula for the Weyl symbol of H~*:

bs(x, &) = cn,s /Oo(cosh t)’”e*(ta"ht)(|x|2+\él2) 51 gt
~Jo
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Recall that we have proved the following formula for the Weyl symbol of H™*:
bs(x, &) = cn,s /Oo(cosh t) e~ (tanh t)(Ix[>+51) ps—1 ¢
~Jo

Differentiating the above and recalling the definition of the Hermite polynomials

we see that ailébs(x, &) is given by

cn,s/ow(cosh £)7"(Vtanh t)* Hy ((Vanh t) (x, &) e~ (@b ) (Ix2HE?) ys=1 g
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Recall that we have proved the following formula for the Weyl symbol of H™*:
bs(x, &) = cn,s /Oo(cosh t) e~ (tanh t)(Ix[>+51) ps—1 ¢
~Jo

Differentiating the above and recalling the definition of the Hermite polynomials

we see that ailébs(x, &) is given by

cn,s/ow(cosh £)7"(Vtanh t)* Hy ((Vanh t) (x, &) e~ (@b ) (Ix2HE?) ys=1 g

As @, are uniformly bounded, ailgbs(x, ¢) is estimated by

Cpo(2a1)1/2 / " 571 (cosh t)~"(vVtanh £) el e~ B (tanh ) (X +2) gy

0
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Recall that we have proved the following formula for the Weyl symbol of H™*:
bs(x, &) = cn,s /Oo(cosh t) e~ (tanh t)(Ix[>+51) ps—1 ¢
~Jo

Differentiating the above and recalling the definition of the Hermite polynomials

we see that af‘(’ébs(x, &) is given by

cn,s/ow(cosh £)7"(Vtanh t)* Hy ((Vanh t) (x, &) e~ (@b ) (Ix2HE?) ys=1 g

As @, are uniformly bounded, ailgbs(x, ¢) is estimated by

Cpo(2a1)1/2 / " 571 (cosh t)~"(vVtanh £) el e~ B (tanh ) (X +2) gy

0

In order to estimate the above, we rewrite the integral as follows:

| = /°° ﬁ ¢(s=1)/n (cosh t)—l( tanh )% o= 3x (tanh ) (IX2+[22) gy
0 i
Jj=1
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where

Applying generalised Holder's inequality, we estimate | < Hj’-’:l /jl/"

= [t (cosh )" (Vianh o) e B HER) gy
0
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Applying generalised Holder's inequality, we estimate | < Hj’-’: where

1
L
= [ e (cosh ) " (Veanh )™ e B P g

As tanh t behaves like t for small values of t and is dominated by ¢ for t > 1 and

since s — 1 < 0 we can dominate the above integral by

Jj= / (tanh t)571 (cosh t)~"(V/tanh t)™ e 2(tanh ) (X2 +2%) gy
0
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where

Applying generalised Holder's inequality, we estimate | < Hj’-’:l /J-l/"

= [t (cosh )" (Vianh o) e B HER) gy
0

As tanh t behaves like t for small values of t and is dominated by ¢ for t > 1 and

since s — 1 < 0 we can dominate the above integral by
Jj= / (tanh t)s~! (cosh t)~"(V'tanh t)™i e~ 3 (tanh &) (IxI2+[g?) g
0

By making the change of variables tanht — t we are led to estimate

1
Jj = C/ tgtxj—i_s_l (]_ - t2)n/2_1 e—%t(\x‘2+|§‘2) dt.
0
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Applying generalised Holder's inequality, we estimate | < Hj’-’: where

1
L
= [ e (cosh ) " (Veanh )™ e B P g

As tanh t behaves like t for small values of t and is dominated by ¢ for t > 1 and

since s — 1 < 0 we can dominate the above integral by
Jj= / (tanh t)571 (cosh t)~"(V/tanh t)™ e~z (tanh ) (Ix+[E?) g
0
By making the change of variables tanht — t we are led to estimate
1
Jj = C/ tgtxj—i_s_l (]_ - t2)n/2_1 e—%t(\x‘2+|§‘2) dt.
0

Under the extra assumption that n > 2 we can neglect the factor (1 — t2)"/2~1

and get the trivial estimate

< x4+ 1EP)s, 1< Cllxl? +1e) .
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Dominating J; by a gamma integral and evaluating the same we also get

Jj < CO(s+ ) (I +[g[?) 3472,
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Dominating J; by a gamma integral and evaluating the same we also get
n ) 2\—Dy.—
J < CT(s+ Ja) (1x[2 + g[2) 8057,

By a simple application of Stirling's formula for the gamma function we get

Jj < C () "2(x2+1212) 8%, 1 < cll (@) 2(|x? + |g[2)2lels
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Dominating J; by a gamma integral and evaluating the same we also get
n ) 2\—Dy.—
J < CT(s+ Ja) (1x[2 + g[2) 8057,

By a simple application of Stirling's formula for the gamma function we get

Jj < C () "2(x2+1212) 8%, 1 < cll (@) 2(|x? + |g[2)2lels

Recalling that [0 :bs(x, ¢)| < C(2!*la1)1/2 | we have proved the following

estimates:
02 ¢bs(x, &) < ClM (@) 2(|x |2 + [g[)~*.

98 ebs(x,&)| < €Il (at)(Ix[2 + g )72 I,
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Dominating J; by a gamma integral and evaluating the same we also get
n ) 2\—Dy.—
5 < CT(s+ Ja) (2 +1g2) 87

By a simple application of Stirling's formula for the gamma function we get

Jj < C () "2(x2+1212) 8%, 1 < cll (@) 2(|x? + |g[2)2lels

Recalling that [0 :bs(x, ¢)| < C(2!*la1)1/2 | we have proved the following

estimates:
02 ¢bs(x, &) < ClM (@) 2(|x |2 + [g[)~*.

98 ebs(x,&)| < €Il (at)(Ix[2 + g )72 I,
For any r € [0,1], by writing
5% bsx, )] = 195, s, E)[M 7195 b (x, )1
and using the above estimates, we prove the result.
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There is yet another way of realising the fractional powers via the so called
extension problem associated to the Hermite operator.
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There is yet another way of realising the fractional powers via the so called
extension problem associated to the Hermite operator.

For 0 < s < 1 we consider the initial value problem on R" x R™:

92 1-25 9

(302 =5 3p)ubxp) = Hulx.p). limp0 ulx, p) = F(x)

where f € L2(IR") and the limit is taken in the L?(IR") norm.
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There is yet another way of realising the fractional powers via the so called
extension problem associated to the Hermite operator.

For 0 < s < 1 we consider the initial value problem on R" x R™:

92  1-2s0 _
(8? + Tﬁ)“(X’P) = Hu(x,p), limyou(x,p) = f(x)

where f € L2(IR") and the limit is taken in the L?(IR") norm.

A solution of the above problem is explicitly given by

1 ®© 10 s
U(X,p):W(S)PZS/O e af e tHf(X)t s ldt
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extension problem associated to the Hermite operator.

For 0 < s < 1 we consider the initial value problem on R” x R™:
92  1-2s0 _
(@ + T%)U(X’p) = Hu(x,p), limyou(x,p) = f(x)

where f € L2(IR") and the limit is taken in the L?(IR") norm.

A solution of the above problem is explicitly given by

1 ®© 10 s
U(X,p)zﬁ(s)pzs/o e af e tHf(X)t s ldt

Indeed, it is very easy to verify that u(x, p) defined above satisfies the initial value
problem. Simply use the fact that

92 1—|—25£

(52 + ) (7l H) = (e,

at(t
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The initial condition is verified by making a change of variables and writing

1 © 1,2 e
U(X,p):W(s)‘/o e 4te tp Hf(X)t s 1dt
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The initial condition is verified by making a change of variables and writing

1 © 1,2 e
U(X,p):W(s)/o e 4te tp Hf(X)t s 1dt

The connection between u(x, p) and H*f is brought out by the following analysis.

d 2 © 1 2
_ 1-2s _ 2(175)/ —L —tpH (1-s)-1
0 aPu(x,p) 45F(s)p e e Hf (x) t dt.
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The initial condition is verified by making a change of variables and writing

1 © 1,2 e
U(X,p):W(s)/o e 4te tp Hf(X)t s 1dt

The connection between u(x, p) and H*f is brought out by the following analysis.

d 2 © 1 2
_ 1-2s _ 2(175)/ —L —tpH (1-s)-1
0 aPu(x,p) 45F(s)p e e Hf (x) t dt.

This, after a change of variables gives

d 2 e 1.2
1259 _ ~Llp? tH (1-s)-1
0 aPu(x,p) 451,(5)/0 e # e M Hf (x) t dt.
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The initial condition is verified by making a change of variables and writing

1 © 1,2 e
U(X,p):W(s)/o e 4te tp Hf(X)t s 1dt

The connection between u(x, p) and H*f is brought out by the following analysis.

d 2 © 1 2
_ 1-2s _ 2(175)/ —L —tpH (1-s)-1
0 aPu(x,p) 45F(s)p e e Hf (x) t dt.

This, after a change of variables gives

d 2 e 1.2
_pl-2s 7 - _“ — 202 —tH (1-s)—-1
0 apu(x,p) 451,(5)/0 e # e M Hf (x) t dt.

By taking the limit and noting that the integral converges to T'(1 — s)Hlszf we
obtain
I(1-s)

rs) Hef.

0
_1-2s 1-2s
p faPU(xvp) =2

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 35/38



When we take Pyf, f as the initial condition, as et P, f = eft(2k+”)Pkf, the
solution of the extension problem takes the form

L g [F L2 (2ktn) 51
”k(X'P)_4sr(5)p (/0 e e t dt)Pkf(x).
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When we take Pyf, f as the initial condition, as et P, f = eft(2k+")Pkf, the
solution of the extension problem takes the form

L g [F L2 (2ktn) 51
”k(X'P)_4sr(5)p (/0 e e t dt)Pkf(x).

By making a change of variables we see that ux(x, p) = ms((2k + n)p?) Pif(x)
where

1 [eo]
ms((2k + n)p?) = FT(E) ((2k + n)p?)® (/0 e~ @ (2ktn)p? o=t y—s—1 dt).
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When we take Pyf, f as the initial condition, as et P, f = eft(2k+")Pkf, the
solution of the extension problem takes the form

L g [F L2 (2ktn) 51
”k(X'P)_4sr(5)p (/0 e e t dt)Pkf(x).

By making a change of variables we see that ux(x, p) = ms((2k + n)p?) Pif(x)
where

[eo]

((2/( + n)p2)s(/0 e*%(2k+n)p2e7t tfsfl dt).

The above integral can be evaluated in terms of MacDonald function Ks(r):

°° 1.2
Ko =275 [Tedrete sl
0
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When we take Pyf, f as the initial condition, as et P, f = e t(2k+n) P, f, the
solution of the extension problem takes the form

L g [F L2 (2ktn) 51
uk(x,p)—4sr(s)p (/0 e e t dt)Pkf(x).

By making a change of variables we see that ux(x, p) = ms((2k + n)p?) Pif(x)
where

[eo]

((2/( + n)p2)s(/0 e*%(2k+n)p2e7t tfsfl dt).

The above integral can be evaluated in terms of MacDonald function Ks(r):
Ko =275 [Tedrete sl
0
Thus we have

1-s
my((2k + m)p?) = 2

@( (2k +n)p)°*Ks(4/ (2k + n)p).
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Therefore, a solution of the extension problem with initial condition f takes the
form

1-s
u(x,p) = %(px/ﬁmwﬁ)ﬂx).

Most of the properties of the solution u(x, p) can be read off from this formula.
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Therefore, a solution of the extension problem with initial condition f takes the
form

1-s
uwm=%5WWWQm@ww

Most of the properties of the solution u(x, p) can be read off from this formula.

Recall that e~ is the Weyl transform of the function p; on C":

et = W(py), pe(z) = co(sinht) e~ i(coth )izl
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Therefore, a solution of the extension problem with initial condition f takes the
form

1-s
u(x,p) = %(px/ﬁwwﬁ)f(x).

Most of the properties of the solution u(x, p) can be read off from this formula.

Recall that e~ is the Weyl transform of the function p; on C":
e tH = W(py), pe(z) = co(sinht) "e a(cotho)lz?,

Therefore, u(x,p) = W(Gs,)f(x) where we have defined

_ 1 2s * R —s—1
GSVP<Z)—45F(S)P (/0 e 4 pt(z)t dt)-
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Therefore, a solution of the extension problem with initial condition f takes the
form

1-s
u(x,p) = %(p\/ﬁ)%@\/ﬁ)f(x)-

Most of the properties of the solution u(x, p) can be read off from this formula.

Recall that e~ is the Weyl transform of the function p; on C":
e tH = W(py), pe(z) = co(sinht) "e a(cotho)lz?,

Therefore, u(x,p) = W(Gs,)f(x) where we have defined
1 5 1 —s—1
G5,p<2) = F(s)p S(/O e atl pt(z) t—* dt)

We can get the Weyl symbol of H® by taking the Fourier transform of Gs, and
taking the limit of p1~25 2. G 5(x, &),

S. Thangavelu (11Sc) Holomorphic extensions 21-26, June 2021 37/38



Thanks for your attention
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