Invariant manifolds in Hermite Sobolev spaces

Stefan Tappe

Albert Ludwig University of Freiburg, Germany

Online Workshop on
Stochastic Analysis and Hermite Sobolev Spaces
21-26 June 2021

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) Invariant manifolds in Hermite Sobolev spaces



Structure of the presentation

@ Interest rate models:

@ Preliminaries
@ The HIJMM equation
© Invariant manifolds and finite dimensional realizations

@ Invariant manifolds for SPDEs in continuously embedded
Hilbert spaces:

@ Invariant manifolds in finite dimension

@ Stochastic partial differential equations and invariant manifolds
© Semilinear SPDEs

@ Quasi-linear SPDEs

© Hermite Sobolev spaces

@ Invariant manifolds in Hermite Sobolev spaces

@ |Interplay between SPDEs and finite dimensional SDEs

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) Invariant manifolds in Hermite Sobolev spaces



First topic

Interest rate models )

@ Some references:
O Bjork (2004)
@ Carmona & Tehranchi (2006)
© Filipovi¢ (2010)
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Preliminaries )
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Zero Coupon Bonds

e Contracts (P(t, T))o<t<T-
@ Ensuring one monetary unit at the date of maturity T.
@ The evolution t +— P(t, T) is a stochastic process.

=]
-
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The forward rates

o Forward rates (f(t, T))o<t<T-
@ Rates at time T regarded from today’s perspective t.

@ The bond prices are given by

P(t, T):exp<—/tT f(t,s)ds), t<T.

HJM modeling approach: For each T > 0 we have
t
f(t, T)=f*(0,T) +/ a(s, T)ds
0
t
—l—/ o(s, T)dWs, te][0,T].
0

@ Here W is an R"-valued Wiener process.
@ See: Heath, Jarrow & Morton (1993).
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Arbitrage free bond markets

No opportunity to gain money without any risk.

This is ensured if there exists a martingale measure Q ~ P.
Under Q, for each T > 0 we have

<P(t,T)> € M.
B(t) / tep, 1]

@ Here B denotes the savings account

B(t) = exp (/Ot f(s,s)ds> . teR,.

Under Q, the drift term is given by the HJM drift condition
T
t

anpa(t, T) = 3o, T)/ o (t, 5)ds.
=1
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The HIMM equation |
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From HJM to stochastic equations

@ We perform the Musiela parametrization
re(x) := f(t,t +x) for t,x € Ry.

@ See: Musiela (1993).
@ Then we arrive at the HIMM equation

{drt = (%rt+0¢HJM(rt))dt+a(rt)th (1)

n = ho.

@ The drift is given by the HJM drift condition

o0

auni(h) =3 0l(h) [ oi(h)a)d )

@ This is a SPDE in the framework of the semigroup approach.

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) Invariant manifolds in Hermite Sobolev spaces



The HIMM equation

Now H and U are separable Hilbert spaces.

o Let W be an U-valued Q-Wiener process for some self-adjoint
operator Q € LT (U).

o We have o : H — L3(H).
@ agmym : H — H is given by the HJM drift condition (2).
@ State space H of functions h: Ry — R.

006

0.04
I

0.00
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The space of forward curves

@ For 3 > 0 we define the separable Hilbert space
Hg :={h: R4 — R : his absolutely continuous and ||h||s < co}.

The norm is given by

1/2
Alls = (|h(o>|2+ / |hf(x)|2eﬁxcfx> -
+

(5¢)¢>0 is the translation semigroup S¢h = h(t + e).
The translation semigroup (St)¢>0 is a Cop-semigroup on Hg.
The infinitesimal generator is the differential operator d/dx.

e 6 o6 o

The domain of d/dx is given by
D(d/dx) ={h € Hg: h' € Hg}.

e See: Filipovi¢ (2001).
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Existence of mild solutions

@ Suppose there are constants L,, M, > 0 such that

lo(h) = o(@)lligqmy) < Lollh— glls,  h,g € Ha,
lo(h)llugryy < Mo, h € Hs.

@ Then there are constants L,, M, > 0 such that

lomam(h) — arm(g)lls < Lallx = ylis,
larmi(h)llp < Ma.

@ Existence and uniqueness of mild solutions.
@ Some references:

@ Filipovi¢ (2001).

@ Filipovi¢ & Tappe (2008).

© Filipovi¢, Tappe & Teichmann (2010).
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Invariant manifolds and
finite dimensional realizations
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Invariant manifolds

@ Consider an H-valued SPDE

dry = (Art—l—a(rt))dt+a(rt)th
n = h().

(3)

o Let .# be a finite dimensional C2-submanifold of H.

e ./ is called locally invariant for the SPDE (3) if for each
ho € # there exists a local mild solution r with ryp = hg such
that r” € .# for some stopping time 7 > 0.

@ The SPDE (3) has a finite dimensional realization (FDR) if for
each hg there exists an invariant manifold .#Z with hg € .
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[llustration

@ Trajectory on an invariant submanifold:
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An invariance result

o We assume that o/ € CY(H) for each j € N.
@ Then . is locally invariant if and only if

A C D(A),

ol(h) € Tptt, he.# andj€EN,

Ah + a(h —fZDof hye Tptt, he ..
jeN

@ References:
o Filipovi¢ (2000).
o Nakayama (2004).
o Filipovi¢, Tappe & Teichmann (2014).
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The HIMM equation

@ There are several models with an affine realization; e.g.:
© Ho-Lee model: o(h) =c- 1.
@ Vasitek model: o(h) =c-e 7.
© Cox-Ingersoll-Ross model: o(h) = p+/|h(0)|A, where

d 2
—_— A = = 1.
dx/\ +p AN +yA =0, A(0)

@ References:

@ Bjork & Svensson (2001), Bjork & Landén (2002).
@ Filipovi¢ & Teichmann (2003, 2004).

© Tappe (2010, 2012, 2016).

@ Platen & Tappe (2015).
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Invariant manifolds for SPDEs in continuously
embedded Hilbert spaces I

@ Main reference: Bhaskaran & Tappe (2021).
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Invariant manifolds in finite dimension )
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Stochastic differential equations

e Consider the R9valued SDE

dXt = b(Xt)dt + O'(Xt)th
Xo = xo.

@ Here xp € RY is the starting point.

@ We consider measurable mappings
b:R? - R? and o:R?— R

@ W is an R"-valued standard Wiener process.
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Invariant manifolds

@ Let .# be an m-dimensional C?-submanifold of RY (m < d).

e ./ is called locally invariant for the SDE (4) if for each
Xo € . there exists a local weak solution (B, W, X) with
Xo = xp such that X™ € .# for some stopping time 7 > 0.

@ Trajectory on an invariant submanifold:
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Classical invariance result

@ Recall the R9-valued SDE

XO = Xo-

o We assume that b € C(RY;R?) and o € C}(RY; RI*").
e ./ is locally invariant for the SDE (5) if and only if

—fZDaJ x) € Ty,

Jl(x),...,a (x) € Tyt

for all x € .
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Stochastic partial differential equations and
invariant manifolds

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) Invariant manifolds in Hermite Sobolev spaces



Continuously embedded Hilbert spaces

o Let (G, (-,")g) and (H, (-, )n) be Hilbert spaces.
@ Then we call (G, H) continuously embedded Hilbert spaces if:

@ We have G C H as sets.
@ The embedding operator Id : (G, || - ||l¢) = (H, || - |n) is
continuous; that is, there is a constant K > 0 such that

Ix[l# < Kl|x]|¢ forall x € G.

@ In the sequel, we are interested in continuous mappings

A (G lle) = (H. |l - [Ik)-
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Stochastic partial differential equations

Let (G, H) be continuously embedded Hilbert spaces.

We assume that G and H are separable.
Consider the SPDE

Yo = Y.

Here yp € G is the starting point.

Moreover, we consider continuous mappings

L:G—H and A',...,A":G— H.
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Martingale solutions

e A triplet (B, W, Y) is called a local martingale solution to the
SPDE (6) with Yy = yo if:
Q B=(Q,#,F,P) is a stochastic basis.
@ W is an R"-valued standard Wiener process on B.
@ VY is a G-valued adapted process on B such that for some
stopping time 7 > 0 we have P-almost surely

tAT tAT
Yorr = o +/ L(Ys)ds—i—/ A(YS)dWs, tER,.
0 0

in (H, [ lIw) in (H, [l 1lw)

o Y:: (Q,%:)— (G,#B(H)¢) is measurable for every t € R.
e By Kuratowski's theorem we have #(G) = Z(H)¢.

@ The existence of martingale solutions is unclear.
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Submanifolds in Hilbert spaces

o Let H be a Hilbert space and m, k € N.
o Let .# be an m-dimensional Ck-submanifold of H.

@ That is, for every y € .# there are an open neighborhood
U C H of y, an open set V C R™ and a mapping
¢ € CK(V; H) such that:
Q ¢:V — UnN.# is a homeomorphism.
@ D¢(x) € L(R™, H) is one-to-one for each x € V.

@ ¢ is called a local parametrization of .# around y.
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The tangent space

The tangent space of .# at a point y € 4 is

T, M = Dp(x)(R™), where x = ¢~ 1(y).

¢:V — UN.# is a parametrization of .# around y.
A mapping A: . # — H is called a vector field on 4 if

Aly)e Ty, ye /.

Let T(T.#') be the space of all vector fields on ..
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Submanifolds in continuously embedded Hilbert spaces

o Let (G, H) be continuously embedded Hilbert spaces.

o We call .# a (G, H)-submanifold of class C* if:

@ We have .# C G as sets.
@ Each parametrization ¢ is also a homeomorphism

p:V=UNA, | e¢)-
This is satisfied if and only if
Id: (A, ln) = (A, -lc)

is a homeomorphism.

@ In this case .# is a topological submanifold of G.
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Invariant manifolds

Let (G, H) be continuously embedded Hilbert spaces.

We assume that G and H are separable.
Consider the SPDE

Yo = Y- ¢

Let .# an m-dimensional (G, H)-submanifold of class C*.

M is called locally invariant for the SPDE (7) if for each
Yo € A there is a local martingale solution (B, W, Y') with
Yo = yo such that Y7 € .# for some stopping time 7 > 0.
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The generalized correction term

e For A, B € I[(T.#) we define the correction term
[A,Bl € A(#)/T(T ).

e Here A(.#) is the space of all mappings A: .# — H.

@ For each parametrization ¢ : V — UN .# a local
representative of [A, B] is given by

y = D*¢(x)(Dp(x) ' Aly), D(x) ' B(y)), yeUN.4,

where x = ¢~ 1(y) € V.
e If Ac CY(H) and B € C(H), then we have

[A, B] = [DA - Blr(1.0)-
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The invariance result

@ We assume that L, Al,... A" : G — H are continuous.
o Let .# be an m-dimensional (G, H)-submanifold of class C2.

A is locally invariant for the SPDE

Yo = Yo

if and only if

Af|,/,er(T//1) j=1,...,r,

(LI.Alr(T.y = Z[A’|/zw4’|///]
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Semilinear SPDEs J
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Semilinear SPDEs

@ We consider the H-valued SPDE

dYt = (AYt +OZ(Yt))dt+U(Yt)th

v ®)
0o = Yo

@ Here A: H D D(A) — H is a densely defined, closed operator.

e Furthermore «,01,...,0" : H — H are continuous.

o A local analytically weak martingale solution (B, W,Y) is
defined similar as a local martingale solution, but now we
require that for all € D(A*) we have P-almost surely

(€ Yebu = (coln+ | A Yo+ (G alYe) ) ds

t
+ [(cotruam, ter,.
0
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An invariance result

@ (D(A), H) are continuously embedded Hilbert spaces, where

Iylloay = \/IvlIE + 1AYIZ, v € D(A).

For a C?-submanifold .# of H the following are equivalent:
@ ./ is weakly locally invariant for the SPDE (8).

@ ./ is a (D(A), H)-submanifold, which is locally invariant for
the SPDE (8).

@ # is a (D(A), H)-submanifold, and we have
o e(TH), j=1,.

[(A+ a).alr(r.0) Z[UJ|%7UJ|/%]
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Remarks on the regularity

Let k,/ € Ny be such that:

© ./ is a Ck-submanifold of H.
Q@ o cCl(H)forallj=1,...,r.

Assumption in Filipovi¢ (2000): k =2 and / = 1.
Assumption in Nakayama (2004): k =1and / = 1.

In this presentation we assume: k =2 and [ = 0.

At any rate, we have

k+12>2.
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Quasi-linear SPDEs |
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Submanifolds with differentiable structures

@ Consider continuously embedded Hilbert spaces

(H07 H1> sy Hk—17 Hk)

Let .# be a (Ho, Hx)-submanifold of class C.

o Then we call .# a (Ho, ..., Hx)-submanifold of class CX if .#
is also a (Hp, Hj)-submanifold of class C for I =1,...,k — 1.

@ Then for every parametrization ¢ : V — U N .4 of the
Ck-submanifold .# we have

k
¢ e C(ViH).
1=0
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Quasi-linear SPDEs

o Let (G, H) be continuously embedded Hilbert spaces.
@ Recall the SPDE

{dYt = L(Yo)dt+ A(Y:)dW, o)
Yo = Y

e Existence of a continuous maps A/ : G x G — H such that

Ay)=A(y,y), y€G,
A =HN(,z)eL(G,H), z€G

forallj=1,...,r.
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Stronger invariance conditions

o Let .# be an m-dimensional (G, H)-submanifold of class C2.

Corollary:

Suppose that

Zv;y,//erIOC(T,///) zed, j=1,...,r, (10)
[L.Arr.ey = 5 Z[AJW/,A]V/] (11)
j=1

Then ./ is locally invariant for the SPDE (9).

o Here I'°(T.#) denotes the space of local vector fields
around z.

o Note that (10) implies that A/ € I(T.Z).
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Simplification of the invariance conditions

@ Let Hp be another separable Hilbert space such that
(G, Ho, H) are continuously embedded Hilbert spaces.

o Assume that .# is a (G, Hy, H)-submanifold of class C2.
@ Suppose that for all j =1,...,r and z € .# we have

A€ L(Ho,H) and All¢ € L(G, Hy).

Proposition:

If condition (10) holds, then (11) is equivalent to

L\//lffZAf MNow € T(T.A). (12)
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Hermite Sobolev spaces |

@ Some references:
© Bhar (2015).
Q It5 (1984).
© Kallianpur & Xiong (1995).
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The Schwartz space

@ A function ¢ : R? — R is called rapidly decreasing if

lim x%p(x) =0 forall a € N§.

x| =00
o The Schwartz space . (RY) is defined as
S (RY) = {p e C®(RY) : D’ rapidly decreasing for all 5 € N¢}.
@ Fréchet space with respect to the seminorms

Pa,m(p) = Seu]lgd(l + IXIMI(D*@)(x)]-
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The space of tempered distributions

@ The space of tempered distributions is its dual space
7' (RY).
o Let f = Tr: .7 (RY) — #'(RY) be the linear operator

Tr(p) = /Rd f(x)p(x)dx, ¢e€ y(Rd).

@ This provides an embedding

S (RY) — .7/ (RY).
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Hermite Sobolev spaces

o The Hermite functions {h, : n € N§} are an ONB of L?(RY).
e For pc R and ¢,¢ € #(RY) we set

R —Z >k +d)*Plp, b2 (ha, ) 2.

k=0 |n|=k

@ We define the Hermite Sobolev space

Zy(RY) = RN ¢ /(R
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o Separable Hilbert spaces (.7,(R9)),cr such that
S (R C Zp(RY) € .7 (R?) for each p € R.
@ For p < g we have Hilbert spaces with continuous embedding
(Sa(RT), Zo(RY)).
@ For g <0 < p we have

F(RY) € ZH(RY) € A(RY) = L2(RY) ¢ 7, (RY) ¢ 7' (RY).

functions distributions

° ForkeNgandp>%+§wehave

Z»(RY) C CK(RY).
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@ Let p € R be arbitrary.

@ The inner product
(2 LR x Z(RY) - R
extends to a continuous bilinear mapping
() I p(RY) x FH(RY) — R.
@ We obtain the dual pair

(S—p(RY), Zp(RY), (-,)).

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) Invariant manifolds in Hermite Sobolev spaces



The Delta distribution

e For x € R? we define 6, € .7/(R?) as

(6, 0) 1= p(x), @ € L (RY).

@ Rajeev & Thangavelu (2008): We have

d
5x € SH(RY) forall p < 7
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Measures as distributions

o Let u be a finite signed measure on (RY, Z(R7)).
@ By identification we have ;€ .7/(R?), where

(o) = [ ol ¢ e S @)

@ With this convention, we have

d
1€ Zp(RY)  forall p< -7
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Polynomials as distributions

o Let f: R? — R be a polynomial of several variables.
o By identification we have f € .7/(R9), where

(F.o) = [ Fdebde o SR,

e With n = deg(f) we have

d
fe. 7R forall p< i g
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The differential operator

o Let i€ {1,...,d} be arbitrary.
o We define 9; : .7/(R9) — .#/(RY) by duality as

<8i¢7 ()0> = _<¢78i80>7 (q)aSO) € yI(Rd) X Ly(IRd)
@ For each p € R we have

Oils Rd)eL(y (Rd),yp(Rd)).
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The multiplication operator

o Letie{1,...,d} be arbitrary.
o Define the multiplication operator M; : ./ (R?) — #(R?) as

(Mip)(x) := xjp(x) for all x € R?.
o We extend to M; : .7/(RY) — #/(RY) by duality as
(Mi®, ) = (&, Mip), (@, ¢) € 7/ (RY) x F(RY).
@ For each p € R we have

Mils Rd)eL(y (Rd),yp(Rd)).
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The Hermite operator

o The Hermite operator H : .#'(R9) — .#/(RY) is defined as
d
H=[x>— A=) (M?-9?).
i=1

@ For each p € R the Hermite operator
Hly ey € L(Fpi1(RY), Zp(RY))

is an isometric isomorphism.
@ See: Rajeev & Thangavelu (2003).
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The translations operator

o For x € RY we define 7, : .7 (R?) — #(RY) as
(e@)(y) =9y —=x), y R
o We extend to 7, : .'(R?) — .#/(R?) by duality as
(1@, ) = (@, 7x0),  (®,9) € S(RY) x S (RY).
o For each p € R and & € .7,(R?) we define the orbit map
fo i RY = ZH(RY),  Eo(x) = Tx®.

o We have &,(x) = dy for all x € R
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Group property of the translations

o Let p € R be arbitrary.
® (7x)xerd is a multi-parameter Co-group on .,(R9).
o That is, (7x)xege is a family 75 € L(-7p(R?)), x € RY with:

0 T0 = 1d.
Q 7y =77y forall x,y € R,

@ &o is continuous for each ® € .7,(RY).
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The infinitesimal generator

@ Fori=1,...,d consider the Co-group (7,)ycr given by

T}i =Ty, ¥y ER

@ We denote the generator of (T;)yeﬂg by

Api Tp(RY) D D(A, ;) — Fp(RY).

The following statements are true:
@ We have .7, 1(R?) C D(Ap).
2
Q fp+%(Rd) is a core for Ap ;.
© We have A, ;® = —0;® for each ¢ € fp+%(Rd).

@ See: Bhaskaran & Tappe (2021).
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Invariant manifolds in Hermite Sobolev spaces |
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Submanifolds in Hermite Sobolev spaces

Let p € R be arbitrary.
Let (G, H) be the continuously embedded Hilbert spaces

G :=.711(RY) and H:=.7,(RY).

Let .# be a finite dimensional CX-submanifold of H.
If # C G, then the following statements are equivalent:

© .# is a (G, H)-submanifold of class C.
@ The restriction

e o

Hig - (A, - lv) = (H(AZ), || - [[H)

is a homeomorphism.
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Embedded submanifolds

o Let ./ be an m-dimensional CX-submanifold of R?. (m < d)
o Let ¢ € CK(RY; H) be one-to-one.
o Let .# be an m-dimensional CX-submanifold of H.

e ./ is called embedded by (¢, ") if for each y € .4 there

exist x € 4 with ¢(x) = y and a local parametrization
¢:V — XN around x such that

p=vop:VsUNA

is a local parametrization around y.

@ lllustration of the definition:
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A criterion for embedded submanifolds

Let 9 € CK(RY; H) be an injective Ck-immersion on 4.
This means that

Dy(x)|1.p € L(TyH , H)

is one-to-one for each x € ./".
Assume that 9|y : A — (A7) is a homeomorphism.

If 4 has one chart, then the image
M= P(N)

is a Ck-submanifold of H embedded by (1, .4").
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Embedded submanifolds in Hermite Sobolev spaces

@ Let p € R and k € N be arbitrary.
o Let .4 be a CK-submanifold of RY with one chart.

@ We will construct appropriate ® € ., (R9) such that

K
2
M= P(N)
is an m-dimensional (ﬂerg(Rd), oy Zp(RY))-submanifold of

class C¥ with one chart, which is embedded by (1, .4").
o Here ¢ := o : RY — ﬂp+§(Rd) is the orbit map.
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Distributions given by measures

o We assume that that p + g < —%.

o Let 4 be a finite signed measure on (RY, Z(R%)).
o Suppose p has compact support and z(R9) # 0.
@ We define the distribution ® := .

@ This includes the Dirac distributions

(D:(SM XERd
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Distributions given by polynomials

@ We assume that p+§<—%—gforsomem§n§d.

o Let f : R? — R be the polynomial
f(x)=x1-...-xp, x€R

@ We define the distribution ¢ := f.
e Moreover, suppose that .4/ C R"” x {0}.
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Distributions given by smooth functions

o We assume that p+ & > 4 4 1
o Let ® ¢ yp+§(Rd) be arbitrary.
@ Then we have ¢ € C(}(]Rd),

@ Suppose there are:

@ neNsuchthat m<n<d,
@ an n-dimensional subspace E C RY such that

[(TA)C N xE,

@ clements vi,...,v, € E and &, ..., &, € RY such that

.....

is invertible.
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The quasi-linear SPDE

e Continuously embedded Hilbert spaces (G, H) given by
G =% 1(RY) and H = .7,(R?) for some p € R.
@ Consider the quasi-linear SPDE
{ dYy = L(Ye)dt+ A(Y:)dW,
Yo = .
@ The mappings L,Al,... A" : G — H are given by

d

d
L) == 3 (0o T) 83y = S (biy)dry,
2 £

1 i=1

<
Il

d
AJ(Y) = —Z<0ij,y>8;y, j=1...,r.

@ Here we have b;,0j; € f,(pﬂ)(]Rd).
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Submanifolds in Hermite Sobolev spaces

Let ® € G be arbitrary.

We consider the orbit map 9 :=&o : R — G.

Let .4 be an m-dimensional C2-submanifold of RY. (m < d)
We define the intermediate space Hy = Yp+%(Rd).

Then (G, Hop, H) are continuously embedded Hilbert spaces.

Let .# be an m-dimensional (G, Hy, H)-submanifold of class
C2, which is embedded by (3, .4).

Recently, we discussed examples on the previous slides.
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Invariance result

We assume that

(b,).y € T(TA),
(o1, W)y s lor, V)| € THTA).

Then the submanifold .# is locally invariant for the SPDE (13).

v

o Here I*(T.#") is the space of all mappings a: .4 — R? such
that for each x € .4 locally we have

a(x) € TeV forall{ e UenNoA.

e If m=d, then .4 is locally invariant for the SPDE (13).
@ See also: Rajeev (2013).
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Interplay between SPDEs and finite dimensional
SDEs J
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Stochastic differential equations

o Consider the R9valued SDE

dXt = b(Xt)dt + O'(Xt)th
Xo = xo.

@ Locally Lipschitz mappings
b:RY - RY and o:RY— R,

o We assume that b;, 0y € .7, (R9) for some g > 9.
o Then we have b;,0;; € Go(RY).
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Invariant manifolds

o Let .4 be an m-dimensional C?-submanifold of RY (m < d).

We assume that

bl y € T(TA),
oy, 0|y € THTA).

Then the submanifold .4 is locally invariant for the SDE (14).

@ For the proof we consider:

@ The quasi-linear SPDE (13), where p = —(q + 1).
@ The m-dimensional submanifold

M= {0x:x €N
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