
A Short Introduction to
Stochastic Integration in Hilbert Spaces

Stefan Tappe

Albert Ludwig University of Freiburg, Germany

Online Workshop on
Stochastic Analysis and Hermite Sobolev Spaces

21-26 June 2021

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) Stochastic Integration in Hilbert Spaces



Structure of the presentation and references

Structure of the presentation:
1 The Bochner integral
2 Martingales in Banach spaces
3 Wiener processes in Hilbert spaces
4 The stochastic integral
5 Infinite dimensional stochastic differential equations
6 Stochastic partial differential equations

Some references:
1 Da Prato & Zabczyk (2014)
2 Gawarecki & Mandrekar (2011)
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Part 1

The Bochner integral
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Simple functions

Let E be a separable Banach space.

Let (Ω,Σ, µ) be a finite measure space.

Denote by E the space of simple functions

f =
n∑

i=1

xi1Ai
.

For f ∈ E we define the Bochner integral∫
Ω
f dµ :=

n∑
i=1

xiµ(Ai ).
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Extension of the integral operator

We have a bounded linear operator

I : L1(E ) ⊃ E → E .

Here L1(E ) is the space of equivalence classes of

L 1(E ) :=

{
f : Ω→ E measurable and

∫
Ω
‖f ‖dµ <∞

}
.

Unique extension, since E is dense in L1(E ).

For a probability space (Ω,F ,P) and X ∈ L1(E ) we set

E[X ] :=

∫
Ω
X dP.
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Conditional expectation

Now, we consider a probability space (Ω,F ,P).

Let G ⊂ F be a sub-σ-algebra.

Denote by E the space of simple random variables

X =
n∑

i=1

xi1Ai
.

For X ∈ E we define the conditional expectation

E[X |G ] :=
n∑

i=1

xiP[Ai |G ].
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Extension of the expectation operator

We have a bounded linear operator

EG : L1(E ) ⊃ E → L1
G (E ).

Unique extension, since E is dense in L1(E ).

For each X ∈ L1(E ) the random variable Z = E[X |G ] is the
unique element Z ∈ L1(E ) such that:

1 Z is G -measurable.
2 We have

E[X1B ] = E[Z1B ] for all B ∈ G .
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Part 2

Martingales in Banach spaces
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Martingales and local martingales

Let (Ω,F ,F,P) be a filtered probability space.

The filtration F = (Ft)t∈R+ satisfies the usual conditions.

Let E be a separable Banach space.

An E -valued adapted process M is called a martingale if:
1 We have Mt ∈ L 1 for each t ∈ R+.
2 For all 0 ≤ s ≤ t <∞ we have P-almost surely

E[Mt |Fs ] = Ms .

An E -valued process M is called a local martingale if there is
a localizing sequence (Tn)n∈N of stopping times such that
MTn is a martingale for each n ∈ N.
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Nuclear operators

Let H1 and H2 be separable Hilbert spaces.

For x ∈ H1 and y ∈ H2 we define

x ⊗ y := 〈x , ·〉y ∈ L(H1,H2).

An operator T ∈ L(H1,H2) is called nuclear if there are
sequences (xj)j∈N ⊂ H1 and (yj)j∈N ⊂ H2 such that

∞∑
j=1

‖xj ⊗ yj‖ <∞ and T =
∞∑
j=1

xj ⊗ yj .

L1(H1,H2) is a separable Banach space with the norm

‖T‖L1(H1,H2) := inf

{ ∞∑
j=1

‖xj ⊗ yj‖ : T =
∞∑
j=1

xj ⊗ yj

}
.
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The trace of a nuclear operator

For an operator T ∈ L1(H) we define the trace

tr(T ) :=
∞∑
j=1

〈Tej , ej〉.

Independent of the ONB {ej}j∈N, and we have

|tr(T )| ≤ ‖T‖L1(H).

An operator T ∈ L(H) is called positive if

〈Tx , x〉 ≥ 0 for all x ∈ H.

For every T ∈ L+
1 (H) we have

tr(T ) = ‖T‖L1(H).
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The quadratic variation

Let H be a separable Hilbert space.

Let M be an H-valued continuous local martingale.

Then there is a unique L+
1 (H)-valued process 〈〈M,M〉〉 with

the following properties:
1 〈〈M,M〉〉 is continuous and adapted with 〈〈M,M〉〉0 = 0.
2 〈〈M,M〉〉 is increasing, that is P-almost surely

〈〈M,M〉〉t − 〈〈M,M〉〉s ∈ L+
1 (H) for all s ≤ t.

3 The L1(H)-valued process M ⊗M − 〈〈M,M〉〉 is a continuous
local martingale.

Moreover, the operators 〈〈M,M〉〉 are self-adjoint.

Recall that T ∈ L(H) is self-adjoint if T = T ∗, that is

〈Tx , y〉 = 〈x ,Ty〉 for all x , y ∈ H.
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A related process

There is a unique real-valued process 〈M,M〉 with the
following properties:

1 〈M,M〉 is continuous and adapted with 〈M,M〉0 = 0.
2 〈M,M〉 is increasing.
3 The real-valued process ‖M‖2 − 〈M,M〉 is a continuous local

martingale.

This process is given by

〈M,M〉 = tr〈〈M,M〉〉.
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Part 3

Wiener processes in Hilbert spaces
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Gaussian random variables

Let U be a separable Hilbert space.

A random variable X : Ω→ U is called a Gaussian random
variable if 〈X , u〉 is normally distributed for each u ∈ U.

There exist m ∈ U and a self-adjoint Q ∈ L+
1 (U) such that

E[〈X , u〉] = 〈m, u〉, u ∈ U,

Cov(〈X , u〉, 〈X , v〉) = 〈Qu, v〉, u, v ∈ U.

We call m the mean and Q the covariance operator of X .

We denote by N(m,Q) the distribution of X .
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Strictly positive covariance operator

Note that for u1, . . . , ud ∈ U we have(
〈X , u1〉, . . . , 〈X , ud〉

)
∼ N

(
〈m, ui 〉i=1,...,d , 〈Qui , uj〉i ,j=1,...,d

)
.

Hence, the following statements are equivalent:
1 We have Q ∈ L++

1 (U).
2 For all linearly independent u1, . . . , ud ∈ U the random vector

(〈X , u1〉, . . . , 〈X , ud〉) is absolutely continuous.
3 For all u ∈ U with u 6= 0 the random variable 〈X , u〉 is

absolutely continuous.

An operator T ∈ L(U) is called strictly positive if

〈Tu, u〉 > 0 for all u ∈ U \ {0}.
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Properties of Gaussian random variables

For X ∼ N(m,Q) the characteristic function is given by

ϕX (u) = exp

(
i〈m, u〉 − 1

2
〈Qu, u〉

)
, u ∈ U.

The parameters are given by

µ = E[X ] and Q = E[(X −m)⊗ (X −m)].

Furthermore, we have

tr(Q) = E[‖X −m‖2].
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Wiener processes in Hilbert spaces

Let U be a separable Hilbert space.

Let Q ∈ L++
1 (U) be a self-adjoint operator.

An U-valued continuous, adapted process W is called a
Q-Wiener process if:

1 W0 = 0.
2 Wt −Ws and Fs are independent for all s ≤ t.
3 We have Wt −Ws ∼ N(0, (t − s)Q) for all s ≤ t.
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Properties of Wiener processes

W is a square-integrable martingale.

The quadratic variation is given by

〈〈W ,W 〉〉t = tQ, t ∈ R+.

Furthermore, we have

〈W ,W 〉t = t · tr(Q), t ∈ R+.
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The spectral theorem

Let T ∈ L(U) be compact and self-adjoint. Then we have

Tej = λjej for all j ∈ J.

Here {ej}j∈J is an ONS of U such that

U = ker(T )⊕2 lin{ej : j ∈ J}.

(λj)j∈J ⊂ R \ {0} is a sequence with λj → 0. (If |J| =∞.)

If T ∈ L+(U) is also positive, then there is a unique compact,
self-adjoint and positive operator S ∈ L+(U) such that

S2 = T .

We use the notation S = T 1/2.
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Spectral decomposition of the covariance operator

For the covariance operator Q ∈ L++
1 (U) we have

Qej = λjej for all j ∈ N.

Here {ej}j∈N is an ONB of U.

(λj)j∈N ⊂ (0,∞) is a sequence with
∑

j∈N λj <∞.

U0 := Q1/2(U) is another separable Hilbert space with

〈u, v〉U0 = 〈Q−1/2u,Q−1/2v〉U , u, v ∈ U0.

The system {
√
λjej}j∈N is an ONB of U0.

Q1/2 : U → U0 is an isometric isomorphism.
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Series representation of the Wiener process

Consider the sequence (βj)j∈N given by

βj :=
1√
λj
〈W , ej〉U , j ∈ N.

These are independent standard Wiener processes.

We have the series representation

W =
∞∑
j=1

√
λjβ

jej .
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Part 4

The stochastic integral
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Outline of the construction

Our goal is the construction of the Itô integral∫ •
0

ΦsdWs = Φ •W .

This is done in the following three steps:
1 Construction for elementary processes.
2 Extend the integral operator, which is a linear isometry.
3 Extension by localization.
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Elementary processes

We fix an arbitrary T ∈ R+.

We denote by E the space of all elementary processes.

An L(U,H)-valued process Φ is called elementary if there are
n ∈ N and 0 = t0 = t1 < . . . < tn+1 = T such that

Φ = Φ01{0} +
n∑

i=1

Φi1(ti ,ti+1]

with Fti -measurable random variables Φi : Ω→ L(U,H).

For Φ ∈ E we define the Itô integral

Φ •W :=
n∑

i=1

Φi (W
ti+1 −W ti ).
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Hilbert-Schmidt operators

An operator T ∈ L(U,H) is called Hilbert-Schmidt if

‖T‖L2(U,H) :=

( ∞∑
j=1

‖Tej‖2

)1/2

<∞.

Independent of the choice of the ONB {ej}j∈N.

L2(U,H) is a separable Hilbert space.

For T ∈ L2(H1,H2) and S ∈ L2(H2,H3) we have

ST ∈ L1(H1,H3)

and the estimate

‖ST‖L1 ≤ ‖S‖L2 · ‖T‖L2 .
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Properties of the integral process

For each Φ ∈ E we have Φ •W ∈ M2
T (H).

Here M2
T (H) is the space of all square-integrable martingales.

We have the Itô isometry

E

[∥∥∥∥∫ T

0
ΦsdWs

∥∥∥∥2
]

= E
[ ∫ T

0
‖Φs ◦ Q1/2‖2

L2(U,H)ds

]
.

For each Φ ∈ L(U,H) we have Φ|U0 ∈ L0
2(H) and

‖Φ|U0‖L0
2(H) = ‖Φ ◦ Q1/2‖L2(U,H).

Here we use the notation L0
2(H) := L2(U0,H).
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Extension of the integral operator

Consider the Hilbert space

L2
T (H) := L2(Ω× [0,T ],PT ,P⊗ λ; L0

2(H)).

The space M2
T (H) is a Hilbert space equipped with the norm

‖M‖M2
T (H) := E

[
‖MT‖2

]1/2
.

By identification we have a linear isometry

I : L2
T (H) ⊃ E → M2

T (H).

Unique extension, since E is dense in L2
T (H).

For each Φ ∈ L2
T (H) we have the Itô isometry

E

[∥∥∥∥∫ T

0
ΦsdWs

∥∥∥∥2
]

= E
[ ∫ T

0
‖Φs‖2

L0
2(H)ds

]
.
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Extension by localization

Let Φ be an L0
2(H)-valued predictable process such that

P
(∫ t

0
‖Φs‖2

L0
2(H)ds <∞

)
= 1 for all t ∈ R+.

We define the Itô integral

Φ •W := lim
n→∞

(
Φ1[0,Tn]

)
•W .

Here (Tn)n∈N is the localizing sequence

Tn := inf

{
t ∈ R+ :

∫ t

0
‖Φs‖2

L0
2(H)ds ≥ n

}
.
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Series representation

We have the series representation∫ t

0
ΦsdWs =

∞∑
j=1

∫ t

0
Φjdβjs .

The sequence of H-valued processes (Φj)j∈N is given by

Φj := Φ(
√
λjej), j ∈ N.

The sequence of Wiener processes (βj)j∈N is given by

βj :=
1√
λj
〈W , ej〉U , j ∈ N.
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Finite dimensional Wiener process

Let U = Rr , and consider a standard Wiener process

W = (W 1, . . . ,W r ).

Then we can take the covariance operator Q = Id.

Let Φ be a predictable H r -valued process.

Suppose that for each j = 1, . . . , r we have

P
(∫ t

0
‖Φj

s‖2
Hds <∞

)
= 1 for all t ∈ R+.

Then the Itô integral is given by∫ t

0
ΦsdWs =

r∑
j=1

∫ t

0
ΦjdW j

s .
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Quadratic variation of the Itô integral

Φ •W is a continuous local martingale.

Square-integrable martingale for Φ ∈ L2
T (H).

The quadratic variation is given by

〈〈Φ •W ,Φ •W 〉〉t =

∫ t

0
(ΦsQ

1/2)(ΦsQ
1/2)∗ds.

Furthermore, we have

〈Φ •W 〉t =

∫ t

0
tr
(
(ΦsQ

1/2)(ΦsQ
1/2)∗

)
ds

=

∫ t

0
‖Φs‖2

L0
2(H)ds.

Note that ΦsQ
1/2 ∈ L2(U,H), and hence

(ΦsQ
1/2)(ΦsQ

1/2)∗ ∈ L+
1 (H).
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Linearity of the Itô integral

Let Φ,Ψ be L0
2(H)-valued predictable process such that

P
(∫ t

0
‖Φs‖2

L0
2(H)ds <∞

)
= 1 for all t ∈ R+,

P
(∫ t

0
‖Ψs‖2

L0
2(H)ds <∞

)
= 1 for all t ∈ R+.

For all a, b ∈ R we have

a

∫ t

0
ΦsdWs + b

∫ t

0
ΨsdWs =

∫ t

0

(
aΦs + bΨs

)
dWs .
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Bounded linear operators

Let A ∈ L(H1,H2) be a bounded linear operator.

Let Φ be an L0
2(H1)-valued predictable process such that

P
(∫ t

0
‖Φs‖2

L0
2(H1)ds <∞

)
= 1 for all t ∈ R+.

Then AΦ is an L0
2(H2)-valued predictable process such that

P
(∫ t

0
‖AΦs‖2

L0
2(H2)ds <∞

)
= 1 for all t ∈ R+.

Furthermore, we have the identity

A

(∫ t

0
ΦsdWs

)
=

∫ t

0
AΦsdWs , t ∈ R+.
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Itô’s formula

Consider an H-valued Itô process

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdWs .

For every F ∈ C 1,2
b,loc(R+ × H;R) we have

F (t,Xt) = F (0,X0) +

∫ t

0

(
DtF (s,Xs) + DxF (s,Xs)bs

+
1

2
tr
(
D2
xxF (s,Xs)(σsQ

1/2)(σsQ
1/2)∗

))
ds

+

∫ t

0
DxF (s,Xs)σsdWs .

Note that D2
xxF (s,Xs) ∈ L(H, L(H,R)) ∼= L(H).
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Series representation

Consider the representation

Xt = X0 +

∫ t

0
bsds +

∞∑
j=1

∫ t

0
σjsdβ

j
s .

Then we have

F (t,Xt) = F (0,X0) +

∫ t

0

(
DtF (s,Xs) + DxF (s,Xs)bs

+
1

2

∞∑
j=1

D2
xxF (s,Xs)(σjs , σ

j
s)

)
ds

+
∞∑
j=1

∫ t

0
DxF (s,Xs)σjsdβ

j
s .

Note that D2
xxF (s,Xs) ∈ L(H, L(H,R)) ∼= L2(H;R).
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More general integrands

Let Φ be an L0
2(H)-valued predictable process such that

P
(∫ t

0
‖Φs‖2

L0
2(H)ds <∞

)
= 1 for all t ∈ R+. (1)

Then we can define the Itô integral∫ •
0

ΦsdWs = Φ •W .

Φ may also be progressively measurable satisfying (1).

Φ may even be adapted and measurable satisfying (1).
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Cylindrical Wiener processes

Consider a standard R∞-Wiener process

W = (βj)j∈N.

We fix an orthonormal basis {ej}j∈N of U.

Then
∑∞

j=1 βjej is an U-valued cylindrical Wiener process.

Let Ū be another separable Hilbert space.

Moreover, let J ∈ L2(U, Ū) be one-to-one.

We define the Ū-valued Wiener process

W̄ :=
∞∑
j=1

βjJej .

Covariance operator Q := JJ∗ ∈ L1(Ū).
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The Itô integral

Let Φ be a predictable L2(U,H)-valued process such that

P
(∫ t

0
‖Φs‖2

L2(U,H)ds <∞
)

= 1 for all t ∈ R+.

We define the Itô integral∫ t

0
ΦsdWs :=

∫ t

0
(Φs ◦ J−1)dW̄s .

Note that for an operator Φ ∈ L(U,H) we have

Φ ∈ L2(U,H) ⇐⇒ Φ ◦ J−1 ∈ L2(Ū0,H).

In this case, we have

‖Φ‖L2(U,H) = ‖Φ ◦ J−1‖L2(Ū0,H).
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Itô’s formula

Consider an H-valued Itô process

Xt = X0 +

∫ t

0
bsds +

∫ t

0
σsdWs .

For every F ∈ C 1,2
b,loc(R+ × H;R) we have

F (t,Xt) = F (0,X0) +

∫ t

0

(
DtF (s,Xs) + DxF (s,Xs)bs

+
1

2
tr
(
D2
xxF (s,Xs)σsσ

∗
s

))
ds

+

∫ t

0
DxF (s,Xs)σsdWs .
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Part 5

Infinite dimensional stochastic differential equations
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Ordinary differential equations

We consider the Rd -valued ODE

dXt

dt
= b(t,Xt), X0 = x0.

Here x0 ∈ Rd is the starting point.

Furthermore, we have a measurable mapping

b : R+ × Rd → Rd .

We are looking for a solution to the integral equation

Xt = x0 +

∫ t

0
b(s,Xs)ds, t ∈ R+.
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Finite dimensional SDEs

Now, we consider the Rd -valued SDE{
dXt = b(t,Xt)dt + σ(t,Xt)dWt

X0 = x0.

Here we have measurable mappings

b : R+ × Rd → Rd and σ : R+ × Rd → Rd×r .

Furthermore W is an Rr -valued Wiener process.

We are looking for a solution to the integral equation

Xt = x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , t ∈ R+.
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Infinite dimensional SDEs

Let H and U be separable Hilbert spaces.

Let W be an U-valued Q-Wiener process for some self-adjoint
operator Q ∈ L++

1 (U).

We consider the H-valued SDE{
dXt = b(t,Xt)dt + σ(t,Xt)dWt

X0 = x0.
(2)

Here we consider measurable mappings

b : R+ × H → H and σ : R+ × H → L0
2(H).

An H-valued adapted, continuous process is called a strong
solution to the SDE (2) with X0 = x0 if P-almost surely

Xt = x0 +

∫ t

0
b(s,Xs)ds +

∫ t

0
σ(s,Xs)dWs , t ∈ R+.
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SDEs driven by cylindrical Wiener processes

Let W be an U-valued cylindrical Wiener process.

We consider the H-valued SDE{
dXt = b(t,Xt)dt + σ(t,Xt)dWt

X0 = x0.

Here we consider measurable mappings

b : R+ × H → H and σ : R+ × H → L2(U,H).

Then we can express the SDE as{
dXt = b(t,Xt)dt +

(
σ(t,Xt) ◦ J−1

)
dW̄t

X0 = x0.
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Existence of strong solutions

Suppose there is a constant L > 0 such that

‖b(t, x)− b(t, y)‖H + ‖σ(t, x)− σ(t, y)‖L0
2(H) ≤ L‖x − y‖H

for all t ∈ R+ and x , y ∈ H.

Suppose there is a constant K > 0 such that

‖b(t, x)‖H + ‖σ(t, x)‖L0
2(H) ≤ K (1 + ‖x‖H)

for all t ∈ R+ and x ∈ H.

Then for each x0 ∈ H there exists a unique strong solution to
the SDE (2) with X0 = x0.
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Martingale solutions

A triplet (B,W ,X ) is called a martingale solution to the SDE
(2) with X0 = x0 if:

1 B = (Ω,F ,F,P) is a stochastic basis.
2 W is an U-valued Q-Wiener process on B.
3 X is an H-valued adapted, continuous process on B such that

P-almost surely

Xt = x0 +

∫ t

0

b(s,Xs)ds +

∫ t

0

σ(s,Xs)dWs , t ∈ R+.

In finite dimension we also speak about weak solutions.
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Existence result in finite dimension

Recall the finite dimensional SDE{
dXt = b(t,Xt)dt + σ(t,Xt)dWt

X0 = x0.
(3)

Suppose that the mappings

b : R+ × Rd → Rd and σ : R+ × Rd → Rd×r

are continuous.

Suppose there is a constant K > 0 such that

‖b(t, x)‖Rd + ‖σ(t, x)‖Rd×r ≤ K (1 + ‖x‖Rd )

for all t ∈ R+ and x ∈ Rd .

Then for each x0 ∈ Rd there exists a weak solution (B,W ,X )
to the SDE (3) with X0 = x0.
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On Peano’s theorem in infinite dimension

Let E be an infinite dimensional separable Banach space.

There is a continuous mapping b : E → E such that the
E -valued ODE

dXt

dt
= b(Xt), X0 = x0

has no solution for every x0 ∈ E .

See: Hájek & Johanis (2010).
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Spaces with compact embedding

Let (G , ‖ · ‖G ) and (H, ‖ · ‖H) be separable Hilbert space.

We call (G ,H) a pair of compactly embedded Hilbert spaces
if:

1 We have G ⊂ H as sets.
2 The embedding operator

J : (G , ‖ · ‖G )→ (H, ‖ · ‖H)

is compact with J∗J ∈ L++(G ).
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Existence of martingale solutions

Recall the H-valued SDE{
dXt = b(t,Xt)dt + σ(t,Xt)dWt

X0 = x0.
(4)

We consider continuous mappings

b : R+ × H → H and σ : R+ × H → L0
2(H).

We assume there is a constant K > 0 such that

‖b(t, x)‖H + ‖σ(t, x)‖L0
2(H) ≤ K (1 + ‖x‖H)

for all t ∈ R+ and x ∈ Rd .
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Compact embedding

We assume there is another separable Hilbert space (G , ‖ · ‖G )
such that:

1 (G ,H) a pair of compactly embedded Hilbert spaces.
2 We have

b(R+ × G ) ⊂ G and σ(R+ × G ) ⊂ L0
2(G ).

3 For all t ∈ R+ and x ∈ G we have

‖b(t, x)‖G + ‖σ(t, x)‖L0
2(G) ≤ K (1 + ‖x‖G ).

Then for each x0 ∈ G there exists an H-valued martingale
solution (B,W ,X ) to the SDE (4) with X0 = x0.

References:
1 Gawarecki, Mandrekar & Richard (1999).
2 Criens (2020).
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Part 6

Stochastic partial differential equations
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Strongly continuous semigroups

Let E be a Banach space space.

A C0-semigroup (St)t≥0 is a family St ∈ L(E ), t ≥ 0 with:
1 S0 = Id;
2 Ss+t = SsSt for all s, t ≥ 0;
3 limt→0 Stx = x for all x ∈ E .

There are constants M ≥ 1 and β ∈ R such that

‖St‖ ≤ Meβt for all t ≥ 0.

The infinitesimal generator A : E ⊃ D(A)→ E is the operator

Ax := lim
t→0

Stx − x

t
.

The generator A is densely defined and closed.
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Examples of semigroups

The translation semigroup

St f = f (t + •)

on L2(R) has the generator Af = f ′ on the domain

D(A) = {f ∈ L2(R) absolutely continuous with f ′ ∈ L2(R)}.

The heat semigroup given by S0 = Id and

(St f )(x) =
1

(4πt)d/2

∫
Rd

exp

(
− |x − y |2

4t

)
f (x)dy , t > 0

on L2(Rd) has the generator Af = ∆f on the domain

D(A) = W 2(Rd).
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Stochastic partial differential equations

Now, let H and U be separable Hilbert spaces.

Let (St)t≥0 be a C0-semigroup on H with generator A.

Let W be an U-valued Q-Wiener process for some self-adjoint
operator Q ∈ L++

1 (U).

We consider the H-valued SPDE{
dXt =

(
AXt + b(t,Xt)

)
dt + σ(t,Xt)dWt

X0 = x0.
(5)

Here we consider measurable mappings

b : R+ × H → H and σ : R+ × H → L0
2(H).
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Strong solutions

An H-valued adapted, continuous process X is called a strong
solution to the SPDE (5) with X0 = x0 if P-almost surely

X ∈ D(A)

as well as

Xt = x0 +

∫ t

0

(
AXs + b(s,Xs)

)
ds +

∫ t

0
σ(s,Xs)dWs , t ∈ R+.

In general, this solution concept is too restrictive.
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Weak solutions

An H-valued adapted, continuous process X is called a weak
solution to the SPDE (5) with X0 = x0 if for every ζ ∈ D(A∗)
we have P-almost surely

〈ζ,Xt〉 = 〈ζ, x0〉+

∫ t

0

(
〈A∗ζ,Xs〉+ 〈ζ, b(s,Xs)〉

)
ds

+

∫ t

0
〈ζ, σ(s,Xs)〉dWs , t ∈ R+.

Here A∗ denotes the adjoint operator of A.

Note that D(A∗) is a dense subspace of H.
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Mild solutions

An H-valued adapted, continuous process X is called a mild
solution to the SPDE (5) with X0 = x0 if P-almost surely

Xt = Stx0 +

∫ t

0
St−sb(s,Xs)ds +

∫ t

0
St−sσ(s,Xs)dWs , t ∈ R+.

Variation of Constants Formula.

In general, we have the implications:

Strong ⇒ Weak ⇒ Mild.

“Mild” and “Weak” are essentially equivalent.

If (St)t≥0 is norm continuous, then the SPDE (5) is rather an
infinite dimensional SDE of the type (4).
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Existence of mild solutions

Suppose there is a constant L > 0 such that

‖b(t, x)− b(t, y)‖H + ‖σ(t, x)− σ(t, y)‖L0
2(H) ≤ L‖x − y‖H

for all t ∈ R+ and x , y ∈ H.

Suppose there is a constant K > 0 such that

‖b(t, x)‖H + ‖σ(t, x)‖L0
2(H) ≤ K (1 + ‖x‖H)

for all t ∈ R+ and x ∈ H.

Then for each x0 ∈ H there exists a unique mild solution to
the SPDE (5) with X0 = x0.

Stefan Tappe (Albert Ludwig University of Freiburg, Germany) Stochastic Integration in Hilbert Spaces



Dilation of the semigroup

We assume there is a constant β ∈ R such that

‖St‖ ≤ eβt for all t ≥ 0.

By the Nagy dilation theorem there exist:
1 another separable Hilbert space H ,
2 a C0-group (Ut)t∈R on H ,
3 continuous, linear operators ` ∈ L(H,H ) and π ∈ L(H ,H),

such that for each t ∈ R+ the following diagram commutes:

H
Ut−−−−→ Hx` yπ

H
St−−−−→ H

See: Sz.-Nagy et al. (2010).
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Reduction to SDEs

We consider the H -valued SDE{
dYt = a(t,Yt)dt + ρ(t,Yt)dWt

Y0 = y0.

Here, the mappings a and ρ are given by

a(t, y) = U−t`b(t, πUty),

ρ(t, y) = U−t`σ(t, πUty).

Then Xt = πUtYt is a mild solution to the SPDE (5).

See: Filipović, Tappe and Teichmann (2010).
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Martingale solutions

A triplet (B,W ,X ) is called a martingale solution to the
SPDE (5) with X0 = x0 if:

1 B = (Ω,F ,F,P) is a stochastic basis.
2 W is an U-valued Q-Wiener process on B.
3 X is an H-valued adapted, continuous process such that

P-almost surely

Xt = Stx0 +

∫ t

0

St−sb(s,Xs)ds +

∫ t

0

St−sσ(s,Xs)dWs , t ∈ R+.

Note that this refers to mild solutions.
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Existence of martingale solutions

Suppose we have continuous mappings

b : R+ × H → H and σ : R+ × H → L0
2(H).

Suppose there is a constant K > 0 such that

‖b(t, x)‖H + ‖σ(t, x)‖L0
2(H) ≤ K (1 + ‖x‖H)

for all t ∈ R+ and x ∈ H.

Moreover, assume that St is compact for each t > 0.

Then for each x0 ∈ H there exists a martingale solution
(B,W ,X ) to the SPDE (5) with X0 = x0.
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