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HYPERSONICS: Top Research Area for Stochastic
Navier-Stokes Equations and Stochastic
Magneto-hydrodynamics




Description of boost-glide and ballistic flight trajectories
necessitate the full hierarchy of aerothermodynamic
models: Liouville-Boltzmann - Euler -
Navier Stokes - Burnett- Super Burnett equations

Hostile air
defenses

launcher

This talk: Navier-Stokes/Euler range. Future expositions:Full
“hypersonics model hierarchy” coupling with the dynamics of
re-entry vehicle and the control problem.

4/118



Hypersonic Glide Vehicle Dynamics

Side View Top View

Figure: v = velocity; v = flight angle relative to local horizontal; kK =
flight angle measured azimuthally from down-range direction; ¥ =
down-range angle over earth; Q = cross range angle over earth; h =
altitude
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Hypersonic Glide Vehicle Dynamics & Control (Geometric

Control and Stochastic Analysis on a Manifold)

Evolution on a Lie group (h,v,v,k,1,Q) € R2 x S*:
dh . dv CpA :
VSN, = eyt —gsing,

dy  vcosy

dt fre + h

dk CpA, pvsino

a ~ P50

dy)  vcosycosk
dr re ’
dQ  vcosvysink
dt fe '

Here Cp and L/D are respectively the drag coefficient and

lift-to-drag ratio given by (test data or) computing/coupling with

the "hypersonics model hierarchy”, o is the vehicle roll angle, m is

the mass of the vehicle and p is the atmospheric density. 6/118

CpA g
+ (L/D)(—=— -=
(L/D)( 5 )pv cos o €07,




History and Motivation: Why Stochastic Navier-Stokes Equatic

Euler Equations

Figure: Leonhard Euler

%qLu-Vu:—Vp, (1)

dive = 0. (2)

Euler, Leonhard (1757). " Principes généraux du mouvement des
fluides” [The General Principles of the Movement of Fluids].
Mémoires de |'académie des sciences de Berlin (in French). 11:
274-315.

7/118



History and Motivation: Why Stochastic Navier-Stokes Equatic

Navier-Stokes Equations: 1820-1840

Figure: Claude-Louis Navier, George Stokes, Saint-Venant

gl;+u-Vu:—Vp+VAu, (3)

divu = 0. (4)
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For Statistical Mechanics Derivation: we will start with

the Liouville Equation and BBGKY Hierarchy

Newtonian description (particle mechanics):

dx’ . d¢f .
= =F =1,---,N.
dt C ) dt ) / ) )
Liouville Equation for the distribution function
fN(xlu"' )xNaclu'” )CNat):

N N
0N 4> ¢ 0N+ F 0N =o0.
i=1 i=1

Here the interaction force:

Fi = Z Fi; with Fi'J =0 for |xi—xj| > d, the molecular diameter.
JF#i
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Defining Q1 = {|x* — x/| > d,j > 1},
Quo = {|x! — x/| > d,j > 2}, etc., we integrate the Liouville
equation to get a hierarchy of distributions:

FH(xt, ¢l t) = / Ndx? .. dxNd¢? - - deV,
Q

Pt ¢ ) = [ dxde e de
Q12

etc. Integrating the Liouville equation (H. Grad, 1958, Principles
of the Kinetic Theory of Gases) we get the BBGKY
(Bogoliubov-Born—Green—Kirkwood—Yvon) hierarchy:

8tf1+cl '6x1f1 = (N_l)/ f2(C2_C1)'d512dC2’
0512

etc., where S;p = {x?%; [x? — x| < d} .
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Boltzmann Equation

We now invoke molecular chaos hypothesis:
fN(xlv T 7XN7 Clu o 7CN7 t) - rllNzlfl(Xi7 Cia t)

if true at t = 0 would propagate for t > 0, and N — oo, we get
the Boltzmann equation:

Oif + ¢ - Oxf + F - 0cf = Q(f, ).
Here the collision operator
QN = [, [ IO - QE.)] BG-C.l.adndc..
with
¢'=¢—1¢—¢)-nmand ¢l =¢. +[(C—¢.) nn
where for hard sphere models

B(|C - C*|7‘9) = (C - C*) -n= |C - C*|C050.
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Properties of the Collision Integral

It can be shown that the collision invariants:

/ Q(f, F)d¢ = 0:
R3

/ CQ(f,f)d¢ = 0;
R3
and

/ C2Q(F, F)d¢ = 0.
]R3

Moreover for Maxwellian distribution:

. L pxt) e
M(p,v,@) - fM(x’ C’ t) o (27TR9(X7 t))3/2 2

where p, 0 are density and temperature (will be defined shortly )
and we have:

Q(M(p,v,é’)a M(p,v,@)) =0.
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Boltzmann to Euler/Navier-Stokes equations

Define macroscopic variables (density, momentum and internal
energy):

e t) = [ Fx.C.0)dc. (densiy),
R3
p(x, t)v(x, t)—/ ¢f(x,¢, t)d¢, (momentum),
R3
p(x, t)e(x,t) :/ K;V‘Zf(x,q, t)d¢, (internal energy),
R3

2
p(x, t)E(x, t):/]R Ie” f(x,¢, t)d¢, (total energy),

and total energy pE = pe + 3p|v|?.
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We will also need macroscopic variables stress P = {Pj}1<; j<3,
pressure p and heat flux g = {gi}1<i<3:

Pij(x,t) = /R3(C; —v;)(¢; — vj)f(x,¢, t)d¢, stress tensor,

Put Pyt Py 1 P
p(x’ t) _ 11 + 22 + 33 — / &f()(,c’ t)dc pressure,
3 3 R3 2
_ _ Vv —=¢P?
ql(xa t) - (CI - VI)TIC(XaCa t)dc’ heat flux.
R3

We will multiply the Boltzmann equation by respectively 1, and
%|C!2 and integrate in the velocity space to get the mass,
momentum and the energy equations of fluid mechanics.
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We arrive at the conservation laws of fluid dynamics:
Otp + Ox - (pv) = 0, Conservation of mass,

Ot(pv) + Ox - (pv @ v + P) = 0, conservation of momentum,
Ot(pE) + Ox - (pvE + Pv + @) = 0, conservation of energy.

Note that these set of equations are not closed as we have (noting
symmetry for P) 14 unknowns and 5 equations.

So need to find additional equations for P and g. In continuum
mechanics one uses Cauchy-Newtonian hypothesis to close the
problem.

Harold Grad (1948,1958) used truncated Hermite multinomial
expansion of f(x, ¢, t) to obtain a total of 14 equations (6 for P
and 3 for Q) by taking additional moments of the Boltzmann
equation.

We also note that for Maxwellian distribution f = M, , gy, we get
P = pd;j and @ = 0 so we have automatic closure and arrive at

the Euler equations of Fluid dynamics.
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Grad’'s H-Theorem

Defining
H = f log fd¢ (entropy) , and H = / ¢f log fd¢ (entropy flux)
R3 R3

we multiply the Boltzmann equation by log f and integrate in the
velocity space to get

otirocH =g [ [ [ 1re-fe)iog 1 B(IG-C.|.0)dndC.dc <o,
4 Jrs Jrs Js3 tfl

and also the integral on the right is zero for Maxwellian
distribution since Q(M(,,v 6), M(y.v,9)) = 0.

16/118



Pioneers of Statistical Theory of Turbulence

Ay I°

Figure: G. I. Taylor, A. Kolmogorov, S. Chandrasekhar, E. Hopf
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Some Classic Books

STATISTICAL STATISTICAL
FLUID MECHANICS FLUID MECHANICS

M f Turbulenc Mechanics of Turbulence

Volume Il

turbulence &

A. S. Monin and A. M. Yaglom A. S. Monin and A. M. Yaglom
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Reynolds Averaging and Reynolds Stress: Osborne

Reynolds, (1895)

Start with the Navier-Stokes or the Euler equations and set
u = U + z where U is a suitable average such as

t+T

U=E[u]or U= lim 2z u(r)dt or / K(x — y)u(y, t)dy.
T—o0 T n

t

Substituting in to the Navier-Stokes and taking average yields

%%+U.VU:_VP+VAU—DMEP®4L (5)

divU = 0. (6)

Ergodicity for 3-D Navier-Stokes with Gaussian Noise by G. Da
Prato and A. Debussche and with Levy noise by Manil T. Mohan,
K. Sakthivel and S.S.S.

The tensor (closure) term R;; = E[z;z]] is called the Reynolds

Stress and is unknown at this point.
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Turbulence Modeling: Eddy Viscosity Models

Let Rj = —E|[zizj] = 2u7Sjj where S; = 3 (%gj" + %), we get

ou .

5p TU-VU=-VP+ Div[(v + pr)VU] (7)
The simplest way to close it is by L. Prandtl (v = 1 below):
The turbulent eddy viscosity @1 is modeled as

pr = 12 (25;5;)2

Interestingly this will give global unique solvability to the Reynolds
averaged equation for v > 2 because this closure hypothesis will
make the viscous term (in blue) maximal monotone.
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Turbulence Closure Modeling- K-Epsilon model

The next level of closure is as follows: Let ur = k; then the
turbulence kinetic energy k = E[|z|%] and turbulence dissipation
€ = E[|Vz|?] are given by

k
K U Vk=prS D[ +ur)VH, ()
Oe € 5 .
E—I—U'VE: E('UTS —¢€)+ Div[(v + pur)Ve]. 9)

The system of equations (7,8,9) is called k-epsilon turbulence
closure model.
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John von Neumann'’s nice review: Recent Theories of
Turbulence, 1949, ONR Report

Figure: John von Neumann: Recent Theories of Turbulence (1949) 118
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Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic

Compressible Navier-Stokes Equations (1959)

% + div(pv) = 0, (10)
8v,- 8v,- ap 80/,'/(
gyi - =1 11
PGt T3 = "o T o (=L (D)
pT(gi +v-Vs)= 1 ,k(av’ avk divg,  (12)
where
oy = n(g)‘;: n g‘/’; _ 5dlvv) + COjpdivv + s, (13)
and

q=—rVT+g. (14)
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Here the correlation structure of random heat flux vector g and
random stress tensor sj, would look like:

E[s;k(tl,rl)gj(tz,rg)] = 07 (15)

E [gi(t1, r1)gk(t2, r2)] = 26 T2630(r1 — r2)6(t1 — ©2),  (16)
Elsik(t1, r1)sim(t2, ro)]

=2T < (51I5km + (5,,,-,(5/(/) + (C — g ) ,k5/m> 5(!‘1 — r2)<5(t1 — t2).
(17)
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Early Works on Rigorous Theory of Statistical and

Stochastic Navier-Stokes Equations

e E. Hopf (1952) - Statistical theory of Navier-Stokes equations
with random initial data.

e C. Foias (1972,73) - Rigorous treatment of Hopf equations for
statistical solutions of Navier-Stokes equations.

@ A. Bensoussan and R. Temam (1973) - Rigorous treatment of
stochastic Navier-Stokes equations with Gaussian noise.

e M. I. Vishik and A. Fursikov (1988) Rigorous treatment of
several aspects of statistical and stochastic Navier-Stokes
equations

M.J.Vishik and A.V. Fursikov
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Stochastic Incompressible Euler Equations

%—I-U-Vu:—Vp—i-F, (18)
divu =0, (19)
u-nlyc =0, (20)
u(x,0) = up. (21)
Abstractly
du + B(u)dt = dM;, t>0, (22)
u(0) =ug € H. (23)

@ M, = W; an H-valued Wiener process with covariance @,
@ dM; = ®(u)d W, multiplicative Gaussian noise
© dM; = d(u)dW, + [, V(u,z)dN(t,z) where N(-,-) is a
Poisson random measure and M; is an H-valued Lévy process.
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__History and Motivation: Why Stochastic Navier-Stokes Equati
The key here is Kato's observations in deterministic Euler
equations:(1) (B(u)),u) = 0 and this leads to the L?(R")
invariance |[u(t)l2rn) = [[t(0)|2(rn). (2) To get higher order
Sobolev estimates Kato used what is now known as The
Kato-Ponce Commutator Estimate:

1°(fg) = £(S°&) |l p(mr)
< C[IVFlleoo@n) |9 gl o qny + 19°F |l o (gen) g || oo (rem)]
for 1 < p < 0o and s > 0, where J := (I — A)%/? is the Bessel

potential. We now apply J® to the Euler equation and rearrange
with notation v® = J°u then

oru*+B(u,v®) = B(v®,v)—J°B(u,u) = Pyu-V(JS°u)—JS°Pyu-Vu

and apply Kato-Ponce inequality to the commutator also noting
(B(u,v®),v*) =0 we get a local estimate for the H*(R"-norm for
s > n/2 + 1 -stochastic case is obtained with the help of Ito
formula and stopping times. Ideas are similar in the quasilinear

hyperbolic systems discussed next. Note that in R"”, PyJ® = J*Py.
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Compressible Euler Equations can effectively capture shock
waves in Transonic and Supersonic Flow
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Stochastic Compressible Euler Equations

We can develop a general theory for quasilinear hyperbolic system
of conservation laws

dU + ( ZA )0 U)dt = dM(U, x,t), (x,t) € R" x [0, T],

U(x,0) = Up(x), x € R".

Here A1, As,--- are symmetric N x N matrices and U € RN with
N being the number of physical variables. The system is said to be
hyperbolic when the matrix

A= Z w;A; has real eigenvalues for w € R"” with |w| = 1.
i=1
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Local and Global Solvability with Levy Noise

Theorem

Let Ug € L*(Q; HS(R")) for s > n/2 + 2, then

I. there exists a unique local strong solution (U, T) to the
stochastic quasilinear symmetric hyperbolic system with Levy noise.
Here 7 > 0 is a stopping time with respect to {F;}+>o such that

T(w) = Nlinoo Tn(w)  for almost all w,

where we define for N € N, 7y (w) 1= infy>o {t : ||U(t)||ns > N},
and
U c LY(Q; D(0, 7(w); H*(R")),

where D(0, 7(w); H*(R") is the space of all cadlag paths from
[0,7) — H*(R") and
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Local and Global Solvability theorem continuation...

U satisfies

tATN .
U(t Ay, x) = U(0, x) / ZAI(U,X, r)0,i U(r,x)dr
0 —

tATN tATN
+ / o(r, / / N(dz, dr)
0

for all t € [0, T], for all N > 1 and for almost all w € Q.
Il. Forany 0 < 6 <1 and 8 > 1, ( positive stopping time):

Plwe it > 6} = (1 - C6%%) (1 + E[| o))

Il. For e > 0, 3k(€) > 0 such that if E[||Uo||}s] < oo then (global
solution):
P{weQ;7=+00} >1—e.
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Stochastic Compressible Navier-Stokes Equations

dp + div(m)dt = 0, (24)

dm + [div(m ® T) - divS(VT) + an'Y} dt
p p

= pfdt + ®(p, m))dW—I—/U\IJ(p, m, z)dN(t, z), (25)

where m = pu, v > N/2 and

2
S=S(Vu)=v (Vu +(Vu)T - 3divu]I> + ndivul.
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Let us consider a class of Borel probability measures P defined on
2
Borel algebra B(L>(0, T; L(G)) x D(0, T; Lv%l(G)) that saisfies

EIP’
te[0,T] L7+1(G)

([ 1 Bnace )p]<oo.

sup (rp(t,.)ufzw(cﬁ||m(t,->||"h )

Denote:
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Martingale Solutions of Compressible Navier-Stokes

Equations

Let v >3/2 and 1 < p < 0. Let the initial law of
(p(x,0), (x 0)), Po be a Borel probability measure on

L7(G) x LW+1(G) with moments:

1 \q\ a_
/ 2y Hf + 1p’||fld]P’o(,0,q) < 0.
L7(G)XL7 L (G) - x

Then the martingale solution P exists with moments

-
EP [ sup €(t)+/ /(M|Vu|2+)\divu|2) dxds
0<t<T o Je

< CEP[(£(0) +1)7].

34/118



Approximation Method (P. L. Lions for Deterministic Case)

We start with a stochastic counterpart of P. L. Lions scheme for
weak solutions to compressible Navier-Stokes (which is in tun the
compressible counterpart of E. Hopf-J. Leray weak solutions to
incompressible Navier-Stokes);

dp + div(m)dt = eApdt,
. m : m B
dm+ |divim® ;) - dle(V;) +aVp? +0Vp” +eVuVp| dt

— pFdt+ (p, m))dW—i—/U\IJ(p, m.2)dN(t,2),  (26)

where 8 > max{9/2,~}. Denote:

_ 1 2 a_ v 0 3
st = [ (ol 2y 00 o
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Then the three levels of approximations (artificial viscosity for the
density equation, artificial pressure in momentum to save the
energy inequality and finite dimensional projection to start the
approximation process) gives a probability law P, ; and the
estimate below is the key to sequential weak limit of probability
Iaws:IP’j\w =>P5 =>P; =>P:

0<t<T

T ,
EPNs [ sup &s(t) +/ / (1|Vul® + N|divu|?) dxds
o Je

T p
+e/ / (ayp? ™2 + 53/)3_2)|Vp|2dxds} < CEP[(&5(0) +1)7].
0 G
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Topological Invariants in MHD and Inviscid Fluid Dynamics

H. K. Moffatt (" Degree of Knottedness of Tangled Vortex Lines,
JFM, 1968). We start with 3 — D inviscid fluid dynamics: u
velocity and w vorticity,

ou
E‘FU'VU——VP,
6l+u-Vw:w-Vu.
ot

Then we have the following two invariants for time evolution:
/\u!2dx = E (total kinetic energy), /u- wdx = H ( Helicity).

For example for two Helmholtz vortex rings with strengths x1, k2,
H = £k1ko if they are linked and H = 0 if un-linked. Helicity H
is a topological invariant in time.

Army applications: Helicopter blade tip vortices, bubble vortex

breakdown, turbine vortices, jet mixing.
37/118



38/118



L. Woltzer (1958) - Helicity in MHD

Magnetic field B = V x A, then the inviscid, non-resistive MHD

system:
0A oB
E—ux(VxA)—ng, E—Vx(uxB),
(a;t'—l—u-Vu——Vp—i—ij.

We then have the following two time invariants:

/A - Bdx = Magnetic Helicity, and /u - Bdx = Cross Helicity.
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Madelung Transform for Quantum Fluids, Photonics,

Superconductivity

Consider the nonlinear Schrodinger equations:

., 0 h?
ihg b (x, ) + = Ap(x, t) = V([$])d(x, t) = 0.

Madelung (1927): start with the wave function in the polar form
b(x, t) = /p(x, )en St and w(x, t) = VS(x, t),

to get the quantum fluid dynamic description:

G}
2:p+ V- (pu) =0,

ot
0
Fraduh Vu=-V(Q+ V(yp)),
where the @ is the quantum pressure: Q = —%2%.

Could give insight in to topological aspects of photonics and

quantum fluids.
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Stochastic Quantum Fluid Dynamics

We start with the Nonlinear Schrodinger equation

) 1
0t + 500 = F([Y1)0 + T
and apply the Madelung transform

(t,x) = V/p(t, )€l
setting u = V¢ we get,
REONN;
Orp + div(pu). (28)
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Stochastic Magnetohydrodynamic System

gﬁ—i—div(pu) =0,
ou 1 .
p a—ku-Vu :—Vp—k;(VxB)xB—kdlvr—krl,
B
({;r—Vx(uxB)—i—nAB—i—Fg,

divB = 0.

Results on martingale solutions are similar to that for stochastic
compressible Navier-Stokes equations.
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Stochastic Navier-Stokes with Hyper, Nonlinear, Non-local

and Hereditary Viscosity Models

du + [vAu + 11 A(u) + B(u)
t
+u2/ K(t — r)Au(r)dr| dt = dM;, t > 0,
0

u(O) =ug € H.

Nonlinear operator A models either (local or non-local) eddy
viscosity in turbulence closure models or non-Newtonian fluids: A
is maximal monotone. Hereditary integral term encodes the history
of strain. Aj is a self-adjoint positive definite operator such as the
negative of Laplacian operator( —A).

The introduction of A makes 3-D case behave like 2-D case. If
v =0, 41 = 0 then the mathematical structure of the problem is
similar to Euler equations of fluid dynamics with or without the

heriditary term.
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Some examples of the artificial viscosity operator A

@ Hyperviscosity A(u) = —(—1)"A"u

@ Maximal monotone p-Laplacian A(u) = —V(|Vu|P~2Vu)

© (non-local viscosity) A(u) = —(1 + ”VUH%Z(G))VU
All the above will give global solvability for 3-D Navier-Stokes. It is
also possible to regularize the inerta term as:

© B(u) = B(K % u,u). A particular example of such a kernel is
K = A~ gives the Navier-Stokes a-model.
It is also possible to modify the nonlinear term so that
vAu + B(u) + \u will become locally maximal monotone as in
Barbu and Sritharan (2001) and also Menaldi and Sritharan (2002)
for another observation of local monotonicity) -both methods have
been applied in several papers in the literature since then.
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Navier-Stokes Equation with Gaussian and Levy Noise

Let (Q2,%, m) be a complete probability space. We consider first
the incompressible Navier-Stokes equation with random initial data
and stochastic force:

du

E—i—u‘Vu:—vaLVAu—H', (29)
divu = 0, (30)
u(x,0) = uo (31)

Here u(x, t,w), p(x, t,w) are the velocity and and pressure fields
respectively and defined on G x [0, T| x Q where G C R" and
uo(x, t,w) is the random initial data with probability distribution
o and '(x, t,w) is the stochastic body force which will be
characterized next.
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Mathematical Preliminaries

Useful basic function spaces

Let G CR" n=2 3 be an open set with smooth boundary 0G.
O H={u:G—R" uclP(G),divu =0,(u-n)|pc =0}
@ V=1{u:G-R"uc W"G),divu =0}
© D(A) = W?P(G)N V, where p > 2, and Au = —PyAu, with
Py : LP(G) — H is the Hodge projection.

We can also define Banach scales

. WZ*P(GYNH if1/2p<a<1
D(A") =4 W2er(G)nH ifa<1/2p (32)
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Statistical Theory of Turbulence:

Hopf-Foias-Vishik-Fursikov

Deterministic Navier-Stokes Equation with Random Initial
Data

d
U vAu + B(u) = f(t), t >0, (33)

u(0) =ug € H. (34)
Here uo : Q — H is a X /B(H)-measurable map with law p:

wo(C) = m{w € Q; up(w) € C},VC € B(H).

We will work with initial measures that satisfy:
] luolPro(duo) < . (35)
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Concepts in Statistical Solutions

If we can characterize measurable maps:

@ a map from initial data to solution at time t,
S(t,-) : up — u(t),
@ and, a map from initial data to the entire path of the solution:
W() :ug = {u(t),0<t< T},
then we can define the spatial statistical solution as
pe() = po 0 S(t) ()
and the space-time statistical solution as

P(-) = o o WH().
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(Spatial) Statistical Solutions

Theorem

There exists a family of measures p:(-),0 < t < T, such that
tt|t=0 = o, pe(+) is concentrated on H for every t € [0, T],
concentrated on V for almost all t € [0, T], the characteristic

functional x(t,v) = [, €<V"">pu¢(dw), Vv € D(A%/?) satisfies the

Hopf equation:

0 .
ax(t, v)+ i/H < Aw + B(w) — f,v > """ (dw) = 0,

for almost all t € [0, T]. Moreover, yu(-) satisfy the energy
inequality:

/ w2 dw)+ / / |AY2 WP (dw)dt < C / o |[2o(dw

v
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Uniqueness of (Spatial) Statistical Solutions

Foias proved in (C. Foias, "Statistical Study of Navier-Stokes
Equations-I", Rend. Semin. Mat. Padova, 48, (1972), pp

219-348.) that
The spatial statistical solutions of the Foias equation
below is unique for the 2-D Navier-Stokes case provided

!
/ / P e (du)dt < oo,
0 H

which holds if the initial measure has the same bound:

/ / o [2 €10l g ()t < oo

V. I. Gishlarkaev (J. Mathematical Sciences, Vol. 169, No. 1,
2010, pp. 64-83) |mproved this result and proved that uniqueness

holds if
/ o 20(dtr) < oo
H
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Space-Time Statistical Solutions

Let us define function spaces
Z:=1%(0,T : H)n C(0, T; D(A~%/?)),
and

U= {u € L2(0, T; V) N L>(0, T; H); gtu e L=(,T; D(AS/Z))} :

Definition
A space time statistical solution corresponding to an initial
measure fig is a probability measure P(C), C € B(Z) having the
following properties:

@ P is concentrated on U; P(U) = 1;

@ there is a set W C U, closed such that W € B(Z), P(W = 1),

@ W consists of solutions of the Navier-Stokes eqations;

V.
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Space-Time Statistical Solutions -Continuation

(Continuation)

@ restriction of P to t = 0 coincides with py,
VC € B(D(A—5/?)),

Y% P(C) = P(%C) = P(u € Z;u(0,-) € C) = uo(C).

@ an energy inequality holds: for any e > 0 and t € [0, T]

[ (e i+ @v - | IV, sdr) P

1 t
< / el 2us0(duo) + ~ / 1F(r, I 1.
H € Jo
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Space Time Statistical Solution- Continuation

(Continuation)

@ we also have the estimate

_s/o0U
/( sup (JlullZ + || A /2_8 “H) P(du)
0<t<T t

<C (/ Hu0||2,uo(duo) 4 ||A_1/2f(7-, -)||2dr> s>n/2+1.
H

Theorem

For two and three dimensional Navier-Stokes equation with initial
distribution having finite second moment [, ||ug||?po(dug) < oo,
there exists a space-time statistical solution P with above
properties. Moreover, it is unique (under same condition) for
two dimensions.

| A\,
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Stochastic Navier-Stokes equation in Abstract form

du + (vAu + B(u))dt = dM,, t >0, (36)
u(0) =uo € H. (37)
Where M, is a local semi-martingale and typical examples are:
@ M, = W, an H-valued Wiener process with covariance @,
Q@ dM; = ®(u)d W, multiplicative Gaussian noise
Q@ dM; = ®(u)dW, + [, V(u,z)dN(t,z) where N(-,-) is a
(compensated) Poisson random (martingale) measure and M,
is an H-valued Lévy process.

Note that formally I is the generalized time derivative of M, i.e.
= %M in the generalized sense.

Unfortunately the stochastic terms in the Landau-Lifshitz
hydrodynamic fluctuation equations are not H-valued martingales
but rather belong to larger space of generalized functions
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Let Q@ € L(H; H) be a linear symmetric operator that is positive
and trace class: TrQ < co. An H-valued Wiener process W (t) has
stationary and independent increments with the correlation
operator defined by:

E[(W(t), p)n(W(T),%)u] = t AT(Q, )1, Y, 7 € H.

Also {\;, ¢i}°; be the eigen system of Q then we have
Q=) X\ <o,
i=1
and we have the representation:
W(e) = VB,
i=1

where (;(t) are one dimensional independent Brownian motions.
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Lévy Process and Poisson Random Measure

Definition
Let E be a Banach space. An E-valued stochastic process is a
Lévy process if

QO L(0)=0,as,;

@ L has stationary and independent increments;

© L is stochastically continuous: for all bounded and measurable
functions ¢ the function t — E[¢(L(t))] is continuous on R

Q L has a.s. cadladg paths.

Special Cases: When the increments are Gaussian distributed the
process is called Brownian motion (or Wiener process) and when
the increments are Poisson distributed then it is called Poisson
process.
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Lévy Process and Poisson Random Measure -continuation..

Let L be a real valued Lévy process and let A € B(R). We define
the counting measure:

N(t,A) = #{s€ (0, T]; AL(s) = L(s) — L(s™) € A} € NU {o0}.

then we can show that
@ N (t, A) is a random variable over (Q, F,P);
Q@ N (t,A) ~ Poisson(tv(A)) and N(t,) =
© For any disjoint sets Ay, --- , A, the random variables
N(t, A1), - ,N(t, A,) are pairwise independent.
Here v(A) = E[N(1,A)] is a Borel measure called Lévy measure.
Compensated Poisson process will then be the martingale:

N(t,A) = N(t, A) — tr(A), YAe B(R).

57 /118



Martingale Problem

Path space is the Lusin space:
Q:= 120, T; H)n D([0, T]; V)N L2(0, T; V), N L>=(0, T; H),.

Here D([0, T]; V') is the Skorohod space of V’-valued Cadlag.
Y, =o0{u(s),s < t}.

The martingale problem is to find a Radon probability measure P
on the Borel algebra B(2) such that

M, := u(t) + /Ot(VAu(s) + B(u(s)) — U(s))ds (38)

is an H-valued (2, B(2), X+, P) -martingale (i.e. a X;-adapted
process such that E[M;|¥;] = Ms) with quadratic variation process

e M s> /tCD(u(s))Q(D*(u(s))ds

0
n /0 /z W(u(s), z) @ V(u(s), z)dv(z)dt.
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Martingale Solutions

Theorem

Martingale (weak) Solution for 2-D and 3-D For two and three
dimensional stochastic Navier-Stokes equation in arbitrary
domains, there exists a martingale solution P which is a Radon
probability measure supported in the subset of paths satisfying the
following bounds:

tel0,T]

;
EFP [ sup Hu(t)\l2+v/o !!Al/zll(t)szf]

-
<E [Huo\P +/ ||U(t)|]21dt] + Tr<<M>>71. (39)
0

Moreover, the martingale solution is unique in two dimensions.
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Strong solutions

Theorem

Strong Solution for 2-D bounded and unbounded domains Let
(Q,%,X;, m) be a complete filtered probability space and W (t) be
an H-valued Wiener process and let N(-,-) be a compensated
Poisson measure with Lévy measure v(-).Let the control function
U()) € L2(Q; L?(0, T; V")) be adapted to X and the initial data
be ug € L?(Q; H). Then there exists a unique strong solution

u € D([0, T]; H)N L2(0, T; V), a.s. and adapted to ¥, such that

)
E| sup [lu(t)]? +v / |AY2u(t)|2dt
te[0,T] 0

-
<E [||uo||2 +/ |U(t)||2_1dt] + Tr<< M >>71. (40)
0

’
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Comment on Covariance Operator @ and higher order

moments

Open Problem The above theorems require TrQ < oo. The
"non-degenerate”case of @ = I is open for martingale solutions,
strong solutions as well as mild solutions discussed next.

Theorem

Higher Order Moments Under additional hypothesis that is
obvious from the estimate below, the solution has the following
estimate: For | > 1,

.
E[ sup IIM(I‘)II2’+V/0 IIU(t)HZ'_2HA”2U(t)II2dt]

te[0,T]

)
SE[HUoHZ’+ / HU(t)H%’ldt] N

v
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Mild Solutions

Theorem

Let (2, F,(Ft)e>0, P) be a given filtered probability space and let
ac Jn=PL™ be Fo-measurable with ||a||m < oo, a.s. Then,
there exists a stopping time 7(w) € (0, T) and a unique mild
solution u, which is F;-adapted with cadlag paths, to the
stochastic Navier-Stokes equations in the mild form

tAT
u(t) = e (VA5 / e (N T=9)AB(y(s))ds
0

tAT tAT
+/ e(t/\Ts)ACDdW(S)-i-/ / e*(t/\T*S)A\U(ssz)N(dZ,dS
0 0 V4

for all t € (0, T) such that

v
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(Continuation....)
td=m/Dy e (0, 7(w); Ty), for m < q < oo

t(l_m/q)VU c LOO(O,T((U); jq), form < q < Q.

Also, for 0 < p < 1, we have
P{r(w) > p} > 1— p°M,

where M is a constant dependent of a,®, V. Moreover, if

||al|m + ¢ assumed to be sufficiently small a.s where C is a constant

depends on ®andV then the solution u is global T AT = T.

v
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Homogeneous Statistical Solutions: Vishik, Komech and

Fursikov

Consider the stochastic Navier-Stokes system
gtu(t,x)—i-u-Vu = —Vp(t,x)—i—VAu(t,x)—i-; W(t,x), t>0,xeR",
V-u=0,
u(0, x) = up(x),x € R"™.
Probability laws of ug and W are translation homogeneous:

Definition

A measure p on B(X) is called translation homogeneous if

h*u(A) = u(A), YA € B(X),Yh € R", where

~

hu(x) = u(x + h), and h*p(A) = u(h=1A). Equivalently,

/ f(u)p(du) :/ f(hu)p(du), Yf e Cp(X),Yh e R".
X X
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Existence Theorem for Homogeneous Statistical Solutions

Theorem

Let the initial distribution po and the Wiener measure \ be
x-homogeneous, then there exists a space time statistical solution
P that is x-homogeneous and satisfies the following bound for the
energy density

/(\u(x, £ +2V/Ot\Vu(T7x)|2dT) P(du)

< [ 1uo(Pu(duo) + [ 1W(ex)PA@W).
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Ergodicity

For ¢ € B,(H) define transition semigroup:

P(t)¢(uo) = E[d(u(t, w))], wuo € H.

If the initial data ug is random with distribution p then the law of
u(t,ug) is P*(t)u. p is called an invariant measure if

P*(t)u=p, t>0.

Existence of invariant measures for stochastic Navier-Stokes
equations is a consequence of the energy inequality (Chow and
Khasminskii, 1997).

Let i be an invariant measure. If it is unique then it is ergodic:

1
lim — P(ug)dt = /qb ¢ € L?(H, ).
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(Doob’s Theorem) Irreducibility and Strong Feller imply
uniquess of invariant measures:

e P(t) is irreducible, i.e. P(u(t,ug) € ') = P(t)1r(ug > 0 for
all ug € H and all sets” C H.

e P(t) is strong feller, i.e. P(t): By(H) — Cp(H).
Then if an invariant measure p exists,

@ L Is the unique invariant probability measure

@ The law of u(t,uq) converges to y:
tll[go Vu(t,up) = M-

@ u and all probability laws v,;,,,) are equivalent.
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It can be shown the irreducibility is connected to the
controllability problem of deterministic Navier-Stokes
equation

Ot + vAu + B(u) = oU.

Strong Feller is a consequence of the Bismut-Elworthy-Li formula

DP,(uo)-h = %E ((b(u(t, o)) /Ot(q>—15(r, 0)h, dW(r)) L (42)

where 5(t,0)®h = {(t) is the solution of the linearized problem
(also Malliavin derivative)

9C(t) + vAC(t) + B(u(t), ¢(t)) + B(¢(t), u(t)) =0,
¢(0) = oh.
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__History and Motivation: Why Stochastic Navier-Stokes Equati
We can estimate the Bismut-Elworthy-Li formula as

t
DPco(uo) - b1 < [ol£ (| [ (07 5(r 0 aw(r)
0
t
< lollt ([ 10715t 0mi%ar ).
0
Since in general ® is not invertable various approximations are
needed to complete the proof.

The concept of asymptotic strong Feller (Hairer and Mattingly)
is shown to be adequate for noise in finite number of modes N:
3d:, — 0 as t, — oo:

|DPy,¢(uo)| < C([luol)([I#llco + 0t [ Do lloc),

which is connected to the controllability problem for the
linearized deterministic NSE:

9:G(t) + vAL(t) + B(u(t), ¢(1) + B(S(t), u(t)) = PuU,
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Approximate Controllability of 3-D Navier-Stokes Equation

with finite dimensional Forcing

We will discuss the approximate controllability results of Armen
Shirikyan (Communications on Math Physics, 266, 123-151
(2006))

Theorem

Consider the controlled 3-D Navier-Stokes equation in a bounded
domain in R3
Oru + vAu + B(u) = h+n,

u(0) = ug € D(AY?),

and h € L7 (R*; H). Given any T > 0,¢ > 0 and any two fields

uo, it € D(AY?), there exists a control ) taking values in a finite
dimensional subspace E C D(A) withn € L*°(0, T; E) and a
solution u € C(0, T) : D(AY?)) N L2(0, T; D(A)) such that

lu(T) — @l pgarrzy < e. 70/ 118



Large Deviations-S. R. S. Varadhan's General Definition

Let S be a Polish space and let P, be a family of probability
measures on Borel sets B(S) converging to a Dirac measure

0x, € S. Large deviations theory formalizes the behavior
P. ~ e /e,

Definition

We say {P.} obeys large deviation principle with a rate function /
if there exists a function I : § — [0, o] satisfying:

QO 0</(u)y<xforallues.

@ /(-) is lowersemicontinuous

© For each | < oo the set {u € S;I(u) </} is compact in S.
Q V closed sets C C S, limsup,_,qeP(C) < —inf,cc I(u).

) <
(C) <
© Vopensets G C S, liminfc_0eP(G) > —infycc I(u).
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Large Deviations-Small Noise Limit (Wentzell-Freidlin

type)

Let P, is the law of the solution of:

du®(t) + [vAu(t) + B(u)] dt = f(t)dt + /ed(t, u(t))d W (t).

Then P, satisfies LDP in C([0, T|H) N L2(0, T; D(AY/?)) with
rate function

1 T
I:(h f = v 2dt},
«(h) = [VEL2(0,T;Ho); /:nt) —g0(J; V(5)ds)] {2/0 IVl

where uy = fo s)ds) solves the deterministic controlled
Navier—Stokes equation

%uv( £) + vAuy(£) + B(uy) = F(£) + O(t, uy (1)) V(2).
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Large Deviations-Large time limit (Donsker-Varadhan type)

Let us define the occupation measures L;(-) € M(H) of the
solutions u(t) as L¢(A) := %fot du(s)(A)ds, VA € B(H).

Theorem

The probability laws of the occupation measures P,(Lt € -) as
T — oo satisfies large deviation property with rate function J,
uniformly with respect to initial measure v, where

J: M(H) — [0, 0] is the Donsker-Varadhan entropy:

For all open sets G € M(H)

1
N : > _j
||_’[n_>|cr>10f = |Og,,|en/1\:4 P,(Lt € G) > —infgJ

For all closed sets C € M(H)

1
limsup = log sup P,(L+ € C) < —infcJ.
T—o0 veM

=
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Donsker-Varadhan Entropy

Let E = D(A'/?) and consider a general E-valued continuous
Markov process u(t),

(Q7(ff20)7]:ﬂ(u(t))t207(Pu)u€E)7

with Markov transition kernels (P¢(u, dv)):>0, with

Q = D(R; E) with Skorohod topology and the natural filtration
Fir=o0(u(s),0<s<t)and F=o0(u(s),0<s). The law of the
Markov process with initial state u € E is P, and for an initial
measure v on B(E) we denote P,(-) = [ Pyv(du).

We have the empirical (random) measures of Level-3 (or process
level) are given by

1 t
Rf = t/ (595wd5 S Ml(Q)
0

where (fw)(s) = w(t + s) for all t,s > 0 are the shifts on Q and
M1(Q) is the space of probability measures defined on Borel sets
B(Q).
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The level-3 entropy functional of Donsker-Varadhan
H : M1(Q2) — [0, 00] is defined by

+00 otherwise

H(Q) = { EQh7 (Qu—son) Puo))  if Q € M3(D)

where M3 () is the space of those elements in M;(£2) which are
fs-invariant (stationary).

Q is the unique stationary extension of Q € M3(Q) to

Q= D(R;E).

The filtration is extended on Q with

Fi=o(u(r);s<r<t),Vs,teR

C_)u(_oqt] is the regular conditional distribution of Q knowing F,; *°.
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hg(v, 1) is the relative entropy (Kullback) information of v with
respect to p restricted to the o-field G given by

/ %‘g log (%’g) dp ifr<pong
+00 otherwise

ho (v, 1) = {

Now the level-2 entropy functional J : M1(E) — [0, co] which
governs the LDP in the main result is

J(8) = inf{H(Q)|Q € Mi(Q) and Q = B}, VS € Mi(E),

where Qo(-) = Q(u(0) € -) is the marginal law at t = 0.
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Optimal Control

Consider control problem of minimizing:

e 0) = €[ [ (12u(r) + J10 )+ T | = it

Here ||AY/2ul|? = ||Curl u||? the enstrophy. We take the state
equation as:

du(t) + (vAu(t) + B(u(t))) dt = KU(t)dt + dM(t),

where K € L(H; V) and the control U(-) : [0, T] x Q — Z will
be taken from the set of control strategies U;. The control set
Z = By(0,R) C H is the ball of radius R in H.

We define the value function as

V(t,v) = U(i-?éu J(t,u, U(-)) for initial data u(t) = v.
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Hamilton-Jacobi-Bellman Equation

Formally the value function satisfies the infinite dimensional
second-order Hamilton-Jacobi(-Bellman) equation:

oV + %Tr(dDQdJ*DzV) — (vAv + B(v), DV)

—I—/ V(v+V¥(v,z),t)—V(v,t) — (D, V,V¥(v,z))] dv(z)
V4

+[|AYV2v | + H(K*DV) =0, ¥(t,v) € (0,T) x D(A), (43)

V(T,v) = ||v|]?, for v € H.
Here H(-) : H — R is given by

HY) = lijgz{(u,Z) n §||U|2}.
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More explicitly we can write

1y if for |Y|| <R
H(Y) =13 —R||Y|| +LR? if for |Y]|>R

Optimal feedback control is given by

U=T(K"D,V(t,u(t)), where
-Y if for||Y] <R

FY)=DzH(Y) =\ Y& if for[Y|>R

Definition

Test Functions A function 1 is a test function of the above
Hamilton-Jacobi equation if ¢» = ¢ + 6(t)(1 + ||AY?v|?)™, where

@ ¢c CL2((0,T) x H), and ¢, ¢;, Do, D¢ are uniformly
continuous on [e, T — €] x H for every ¢ > 0, and

@ 6 C0,T)issuch that § >0on (0, T) and m > 1.

v
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Definition

Viscosity Solution A function V : (0, T) x D(AY2) — R that is
weakly sequentially upper-semicontinuous (respectively
lower-semicontinuous) on (0, T) x D(A'/?) is called a viscosity
subsolution (respectively, supersolution) of the above
Hamilton-Jacobi equation if for every test function ), whenever
Y — 4 has a global maximum respectively, V + ¢ has a global
minimum)over (0, T) x D(A'/?) at (t, v) then we have v € D(A)
and

Dethy + %Tr(dJQdkazq/)) — (vAv + B(v), Dv)

+/ [b(v +W(v, 2),t) = ¥(v, t) — (Dvy), ¥(v, 2))] dv(2)
V4

+||AY2v |2 + H(K*Dy) > 0, respectively < 0. (44)

v
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For two dimensional stochastic Navier-Stokes equation on a
periodic domain (or compact manifold) with TrQ < oo and
Tr(AY2QAY?) < 0o we have

Theorem

The value function is the unique viscosity solution of the
Hamilton-Jacobi equation. It is also locally Lipchitz:

V(t1,v) = V(t2, 2)| < wr([ts = tof + [Jv — 2])),

for t1, t € [0, T] and ||AY?v||, |AY?z|| < r,
V(t,v)| < C(A+||AY2v|?).

Open Problem
The uniqueness of viscosity solution for 3 — D case and the case of
Q = | are open.
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Classical Kalman Filter

We start with the state space model:

d
Ext = F:X¢ + W;, t >0, Signal process,

Zy = H¢ Xy + V4, measurement process

where W; and V; and Xp are uncorrelated, E[Xo] = Xo and
COV(Xp) are given, and

EW:W,]] = Qid(t —s), E[ViV.]]=Ri(t—s), E[V:W/]]=0.

Filtering Problem corresponds to finding the best estimator based
on sensor measurements X; = E[X;|Z(s),0 < s < t] which is the
same as finding X; that mnimizes error variance

E[(Xe — Xe)(Xe — Xe) ],
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Kalman Filtering -continuation

The filtering equation is

d - ~ .
axt = F:Xe + Ke(Ze — He Xe),

with gain
K: := P;H] R, where P; satisfies the Riccati equation

d
Ept: FtPt+PtFtT+Qt—KthKtT.

Going from this classical problem to filtering of turbulence involve
Xt, W; being infinite dimensional (field that depends on spatial
variable), F; is a nonlinear differential operator (terms in the
Navier-Stokes equations) and we allow for H; to be nonlinear as

well.

83/118



Nonlinear Filtering

Consider the partially observed problem:
du + (vAu + B(u))dt = dM; = ®(u)d W, +/ V(u,z)dN(t, z)

z
(45)

The sensor measurement model for Stochastic Calculus
approach:
dz(t) = h(u(t))dt + dW, (46)

where W, is a finite or infinite dimensional Wiener process.
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Nonlinear Filtering: Given back measurements z(t),0 <s <,
how does the least square best estimate which is probabilistically
E[f(u(t))|xZ] where ¥Z is the sigma algebra generated by the
back measurements:

Yi=0{z(s),0<s<t}.

A theorem of Getoor provides the existence of a random measure
13 that is measurable with respect to > such that

Elf(u())[27] = 1ilf] = /H F(Oi(dC).

We require the following condition for the observation vector:

e|f " ()|t < ). (47)
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The Formal Generator of the Navier-Stokes Markov process

The generator of the Markov process u(t) is defined as:

lim ELF(u(t)] = F(uo) = LF(ug), for F e D(L) and ug € D(A).

t—0 t

Formally £ will look like:
LF(v):= %Tr(¢Q<D*D2F(v)) — (vAv + B(v), DF(v))

—1—/2 (F(v+V(v,z)) — F(v) — (D, F,V¥(v,z)))dv(z), Vv € D(A).

(48)
Here an example of F € £ can be constructed as follows: Let
e; € D(A),i=1,--- N be a basis and let ¢ € C°(RV) and set
F(u)=¢(< u,e1 >, - ,< u,ey >) then we will have F € D(L)
since all terms in the generator are well defined.
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Let us describe the special cases of observation noise W(t) and
the finitely additive Gaussian noise e(t) are independent of the
noise terms in the Navier-Stokes equation W and N(-,-).

Then pf(f) satisfy the Fujisaki-Kallianpur-Kunita equation:

dug[f] = pilCf]dt + (i (hf) — pi ()i (F)) (dz(t) — i (h)dt)

If we set

o101 = wilflen | [ ith) - azts) - 3 [ luilhas).

then using lto formula we get the Duncan-Mortensen-Zakai
equation:

dOZ[f] = OZ[LFdt + 97 (hf) - dz(t), for f € Ea(H).
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Existence follow from Getoor theorem but the uniqueness currently
can only be proved for 2-D periodic domains, with the covariance
operator satisfying: Tr@Q < oo and Tr (A1/20A1/2) < 00.

Theorem

Let M(H) and P(H) respectively denote the class of positive
Borel measures and Borel probability measures on H. Then there
exists a unique P(H)-valed random probability measure yi and a
unique M-valued random measure %, both processes being
adapted to the filtration X% such that both measures satisfying
moments of the type:

)
sup E[ / uv|r2uf<dv)] +E[ [/ HA1/2vH2ufdt] < om
o<t<T H 0 H

Fujisaki-Kallianpur-Kunita equation and the Zakai equation are
respectively satisfied for the class of functions from Ea(H).
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White Noise Filtering

The sensor measurement model:

z(t) = h(u(t)) + e(t), (49)
where e(t) is a finite or infinite dimensional white noise and:
T
£ [/ \h(u(t))szt] < . (50)
0

The measures pZ € M(H) and 77 € P(H) satisfy:
. / FO)rZ(dz) = E [F(u(t))|2(s),0 < s < ], (51)
H

< pi, f >
<pt,1>

< pf,f>= E{ exp/CZ }

<7mi, f >=
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where 1
Cs(u) = (hs(u), z(s))n — EHh(U)H?H-

Further the measures pZ € M(H) and 77 € P(H) will be taken
from the class that satisfy the moments:

. T ,
sup /H||v2ui(dv)+ /0 /H||A1/2v||2u§dt<oo. (52)

0<t<T

Given suitable growth conditions on h(-) the energy inequality
above will also imply:

)
/ / () [2dpZdt < oc.
0 H
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Theorem

Let the martingale problem of stochastic Navier-Stokes equation is
well-posed, then for z € C([0, T]; 1) and pZ € M(H) is the
unique solution of the measure valued evolution

t
< pi, [ >=<po,f > +/0 < pL, Lf +CZf > ds, f € Ea(H),
(53)

and the probability measure valued process 7 € P(H) satisfy

<mi, f >=<my,f >

t
+/ [< 7, Lf+Cif > — < 7wZ,CZ ><7i,f>]ds, (54)
0

forf € Ea(H) and0<t<T.
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Optimal Stopping Problems

Consider the optimal stopping problem of characterizing the value
function

V(ew) =i £ | [ 14 2u(s) s+ k() JurIE]
with state equation
du(t) + (vAu(t) + B(u(t)))dt = dW,

U(O) =ug € H.
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Value function solves formally the infinite dimensional
variational inequality (V.I):

1
8tV—§Tr(QD2V)+(VAv+B(v), DV) < ||AY2v|?, for t > 0,v € D(A

V(t,v) < k(v)||v||?, for t >0,v e H,
V(Ov V) - ¢0(V)7 veH.

In the continuation set
{(t,v) e RT x H;V(t,v) < k(v)||v]?},

we have the equality:

8tV—%Tr(QDz]})+(VAv+B(v), DY) = ||AY2v|]?, fort>0,ve D(A
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V.l is recast as a nonlinear evolution problem with multi-valued
nonlinearity:

OW — NW + Ni(W) 3 |AY2u|?, te]o,T],
W(07 V) = ¢O(V)‘

Here N\ is the extension of the generator £) generator and N is
the normal cone to the closed convex subset K C L2(H, ),

K={¢€L*(H,u);¢() < k()| - |* on H},

where w0 is an invariant measure for the transition semigroup
P(t) : Cb(H) — Cb(H)Z

(P(t)0)(v) = E[e(u(t,v))], v e H,Vt> 0,4 e Cy(H),

where u(t, v) is the strong solution with initial data v. Normal
cone: ¢ € K,

Ni(6) = {n € C(H.p): [ an)(0lv) — o(v))ula) < 0w € K} .
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Existence of invariant measure i and its uniqueness for 3-D
stochastic Navier-Stokes with Levy noise was proven the speaker
and co-authors:

/(P() pu(dv) /w u(dv), ¢ e Cp(H).

Then P(t) has an extension to a Cy-contraction semigroup on
L2(H,u). We will denote N/ : D(N') C L2(H,u) — L?(H, 1) the
infinitesimal generator of P(t) and let Ny C A be defined by

(Noy)(v) = %TF(QD%(V))—(VAHB(V), Dip(v)), Vi € Ea(H),

where E4(H) is the linear span of all functions of the form
o(-) = exp(i < h,- >),h € D(A). It can be shown that if

v > C([|QllzH:my + Tr Q) s sufficiently large

and if Tr[A?Q] < oo for 6 > 2/3 then Np is dissipative in
L2(H, ) and its closure Np in L2(H, 1) coincides with N

95/118



We note that for 2-D periodic Navier-Stokes the large viscosity
condition is not needed. Moreover, from the definition of the
invariant measure, taking 1 (v) = ||v||? we have

/ (W) (v)(dv) =0,
H

which implies the integrability of enstrophy || curl v||? = ||A1/?v|?
with respect to the invariant measure pu:

2v/ |AY2v|2u(dv) = TrQ < .
H

(slightly simplified) Solvability theorem for the variational
inequality (or the nonlinear evolution problem)

The proof is based on nonlinear semigroup theory for the
m-accretive operator A = — N + Ny in L>(H, 11).

96/118



Suppose k(v) be such that G(v) = k(v)| v||? satisfies G € C?(H)
and

(MoG)(v) <0, Vv € D(A). (55)

Then for each ¢o € D(N') N K there exists a unique function
¢ € Wheo([0, T]; L?(H, i) such that N¢L>(0, T; L*(H, u)) and

£ 5(8) ~ No(t) +n(t) — A2 |? = 0,aet € (0,T)

n(t) € Nk(o(t)), a.et €(0,T),

¢(0) = ¢o.
Moreover ¢ : [0, T| — L2(H, 1) is differentiable from right and

dt
() =N (1)~ 4202+ Py o) (IIAY2VI2 + N o(2)) = 0

Vt € [0, T], where Py, (4) is the projection on the cone N(¢).

9i
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Impulse Control

du(t) + (vAu(t) + B(u(t)))dt = Y " U;é(t — 7)dt + dW,
i>1

u(0) =ug € H.

Control consists of random stopping times 7; and impulses of
random strength U;,

U :={(r,U1);(m1,Ur);--- }.

The goal is to find an optimal control such that the following cost
functional is minimized,

J(u,U) =E {/OOO e O F(u(t))dt + Z eS"iL(U,-)} — inf.
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We will get quasi-variational inequalities of the form for the value
function V:

and
NV(v) = F(v), in the set {v € H;V(v) < MV(v)}
M(V)(v) = inf {L(U) + V(v + U)}.
Also note that an iterative method of the type:
NVT(v) < F(v),  V"H(v) < M(V")(v),
NV™L(v) = F(v), in the set {v € H;V(v) < M(V")(v)}
M(V")(v) = inf {L(U) + V"(v + U)}

will give us a series of optimal stopping time problems for
n=1,2 ---. However the smoothness of the obstacle functions

M(V") is an issue in this situation.
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Hormander Condition

A linear differential operator P with C* coefficients in an open set
Q C R” (or a manifold) is called hypoelliptic if for every
distribution u in Q we have

sing supp u = sing supp Pu,

that is, u must be a C* function in every open set where Pu is a
C° function.

Definition

(Hormander condition) Let Xp, X1, -+, Xk be vectorfields on R”.
They are said to satisfy Hormander condition if at each point

x € R" if the Lie algebra generated by Xy, X1, , Xk span R".
This means that among operators

lev [levij]’ [lea [ijvXja]L ) [lev [ijv [Xja’ T ’)<jk]]]7
where j;i = 0,1, ..., r there exists n which are linearly independent.
Here [X, Y](x) = DX(x)Y(x) — X(x)DY (x).

v
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Hormander Condition Implies Hypoellipticity

(Hormander Hypoellipticity Theorem (1967)) Let X; be vectorfields
given by differential operators

n
g .
X":;Xij(x)a_@’lzo"n 31,

satisfy the Hormander condition and also the matrices
X(x) := {X;j} are such that XXT(x) invertible everywhere. Then
the partial differential operator

k
P = Z X? + Xo + C is hypoelliptic.
i=1
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Hormander Condition Implies Absolute Continuity

Theorem

Consider the stochastic differential equation in the Stratonovich

form
k

dx = Xo(x)dt + > Xi(x) o dWj(t),
i=0
where W;(t) are standard Brownian motions. Let the vectorfields
Xi(x) be smooth and bounded and satisfy the Hormander

condition. Then the solution of the stochastic differential equation

admits a smooth density with respect to Lebesgue measure.
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Hormander Condition Implies Local Controllability

Theorem

(Chow -Rashevskii (1938)) Let M be a smooth differentiable
manifold and Xy, X1, - , Xi be vectorfields on M. Let these
vectorfields satisfy the Hormander condition. Then the control
system

k
dx
= = Xolx) + ; Ui X;(x)

is locally controllable for any time.

For a linear system x € R"” with controls v € R™:

d

d—);:Ax+BuwhereA€R”xR" and B € R" x R™,
the Hormander condition above reduces to the Kalman Rank
Condition that rank of the n x nm - Kalman block matrix

(AAB,--- 7A"le) must be of dimension n of the state space.
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Malliavin Calculus

Definition

(Gaussian Process) Given a separable Hilbert space H with a scalar
product given by < -, - >y, we say a stochastic process

W = {W(h), h € H} defined in a complete probability space
(Q, F, P) is an isonormal Gaussian process if W is a centered
Gaussian family of random variables such that:

E[W(h)W(g)] =< h,g >y for any h,g € H.

Let C;°(R™) be the set of all infinitely continuously differentiable
functions R™ — R such that f and all its derivatives have
polynomial growth. Let & be the class of smooth random variables
such that a random variable F € § has the form:

F = F(W(h1), -, W(hy)) where f € C°, b1, -+, hy € H.
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Definition

(Malliavin Derivative) The Malliavin derivative of a smooth
random variable F of the above form is the H-valued random
variable given by

DF = i@;f(W(hl), -+, W(hy))hi.
i=1

For example consider the stochastic Navier-Stokes equation:
du + (vAu + B(u))dt = cdW.
Let u = (W0, t]) so that we take the Malliavin derivative

t
Du=¢= !m %CD(W[O, t]+ 6/0 h(r)dr), where

d
£+VAC+BI(U)C = oh, similarly for higher order Malliavin derivatives.

Solvability and estimates of these equations are well-known (Vishik
and Enrcikavy 1022 and (Sritharan 1004 100R) 105/118



For any p > 1 denote the domain of the Malliavin derivative D in
LP(Q) by DYP as the closure of the class of smooth random
variables S with respect to the norm

IFllLp = (E[IFIP]+ E[”DF”/’Z/])I/P-

Theorem

(Malliavin) Let F = (F,---  F™) be a random vector satisfying
the following conditions:

@ F' belongs to the space DY2 forall i =1,--- ,m.
@ The matrix vp = (< DF', DF/ >)1<; j<m is invertible a.s.

Then the law of F is absolutely continuous with respect to the
Lebesgue measure on R™.

4

Fluid models: 2-D stochastic Navier-Stokes equations with periodic
boundary conditions, absolute continuity of the finite dimensional
projections of the law of vorticity with respect to Lebesgue measure

has been shown (in 2004) by J. Mattingly, E. Pardoux and M.

Hairer. Sritharan and Meng Xu (2013) for point vortex models. 145,115



General Relativity: Einstein-Lovelock Theorem

We start with the Riemann-Christoffel curvature tensor defined by:
VoV X' =V, V, X7 = RZMXB ,

and the Ricci tensor R, = Rfuﬁ' the scalar Ricci tensor
R = g"#R,, and the Einstein tensor G, = R, — %gﬂ,,R.

Theorem (A. Einstein 1905, E. Cartan 1922, H. Weyl 1922, David

Lovelock 1976)

In four dimensions the only second order tensor that is divergence
free, depends only on the metric tensor g,,,, and its first and second
derivatives, is the Einstein tensor G,w.

Take g, to be a metric for a Lorenzian manifold with signature
(=1,1,1,1). Then, Einstein Field equations of General Relativity
(a quasilinear second order hyperbolic PDE for g, ):

87G

G = TTW, where T, is the energy momentum tensor.
C
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Stochastic General Relativity

The Stochastic Einstein Field Equation

8rG
G/J,I/ + g,uu/\ = 7 TPLV -+ rw,, (56)

1 ) ) .
Guw = Ry — ERgW is the Einstein tensor,

where R, is the Ricci curvature, R is the scalar curvature, g,
metric tensor, A is the cosmological constant, G is Newton's
gravitational constant, c is the speed of light, and T, is the
energy-momentum stress tensor. [, is a stochastic force tensor.
The Bianchi identity div, G, = 0 and the property of the metric
tensor: div,g,, = 0 leads to relativistic stochastic system:
Stochastic Einstein Field Equations coupled with Relativistic
Stochastic Navier-Stokes Equations:

4

divy T = f;—Gdiver.
T
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Quantum Electrodynamics: Maxwell-Dirac Equations

The Maxwell-Dirac equations with stochastic force

Let v# are components of the electromagnetic vectorfield, and 1 is
the Dirac spinor field from space time to the spin field of four
dimensional complex vector space.The positive definite inner
product in the spin space is denoted by 11 and 1 denotes 1 T~H.

Stochastic Dirac (—iv"0, + m)y = gvi'y, Y+ T,
Stochastic Maxwell Ov, = (A — 83)v,, = gy, + I,
0"v, =0.

Here -y are linear operators in spin space that satisfy
YA + Yyt =2gh, g0 =1 gt = —1,g" =0 for v # p and

Y =0t =t
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