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HYPERSONICS: Top Research Area for Stochastic
Navier-Stokes Equations and Stochastic
Magneto-hydrodynamics
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Description of boost-glide and ballistic flight trajectories
necessitate the full hierarchy of aerothermodynamic
models: Liouville-Boltzmann (Maxwell Vlasov) - Euler -
Navier Stokes (MHD) - Burnett- Super Burnett equations

This talk: Navier-Stokes/Euler range. Future expositions:Full
“hypersonics model hierarchy” coupling with the dynamics of
re-entry vehicle and the control problem.
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Hypersonic Glide Vehicle Dynamics

Figure: v = velocity; γ = flight angle relative to local horizontal; κ =
flight angle measured azimuthally from down-range direction; ψ =
down-range angle over earth; Ω = cross range angle over earth; h =
altitude
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Hypersonic Glide Vehicle Dynamics & Control (Geometric
Control and Stochastic Analysis on a Manifold)

Evolution on a Lie group (h, v , γ, κ, ψ,Ω) ∈ R2
+ × S4:

dh

dt
= v sin γ,

dv

dt
= −CDA

2m
ρv 2 − g sin γ,

dγ

dt
=

v cos γ

re + h
+ (L/D)(

CDA

2m
)ρv cosσ − g

v
cos γ,

dκ

dt
= (L/D)(

CDA

2m
)
ρv sinσ

cos γ

dψ

dt
=

v cos γ cosκ

re
,

dΩ

dt
=

v cos γ sinκ

re
.

Here CD and L/D are respectively the drag coefficient and
lift-to-drag ratio given by (test data or) computing/coupling with
the ”hypersonics model hierarchy”, σ is the vehicle roll angle, m is
the mass of the vehicle and ρ is the atmospheric density. 6 / 118
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Euler Equations

Figure: Leonhard Euler

∂u

∂t
+ u · ∇u = −∇p, (1)

divu = 0. (2)

Euler, Leonhard (1757). ”Principes généraux du mouvement des
fluides” [The General Principles of the Movement of Fluids].
Mémoires de l’académie des sciences de Berlin (in French). 11:
274–315.
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Navier-Stokes Equations: 1820-1840

Figure: Claude-Louis Navier, George Stokes, Saint-Venant

∂u

∂t
+ u · ∇u = −∇p + ν∆u, (3)

divu = 0. (4)
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For Statistical Mechanics Derivation: we will start with
the Liouville Equation and BBGKY Hierarchy

Newtonian description (particle mechanics):

dx i

dt
= ζ i ,

dζ i

dt
= F i , i = 1, · · · ,N.

Liouville Equation for the distribution function
f N(x1, · · · , xN , ζ1, · · · , ζN , t):

∂t f
N +

N∑
i=1

ζ i · ∂x i f N +
N∑
i=1

F i · ∂ζi f N = 0.

Here the interaction force:

F i =
∑
j 6=i

F i ,j with F i ,j = 0 for |x i−x j | > d , the molecular diameter.

9 / 118



History and Motivation: Why Stochastic Navier-Stokes Equations? Hypersonics Hierarchy & Hilbert’s Sixth Problem: From Liouville to Boltzmann to Euler/Navier Stokes Equations Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic Compressible Navier-Stokes Equations Stochastic Incompressible and Compressible Euler Equations Stochastic Compressible Navier-Stokes Equations Various Models from Mechanics and Physics: MHD, General Relativity and Quantum Physics Navier-Stokes Equation and Euler Equations with Gaussian and Levy Noise and Random Initial data Statistical Theory of Turbulence-Rigorous Aspects Ergodicity and Large Deviations Control and Filtering Hormander Condition and Malliavin Calculus: Hypoellipticity, Controllability and Absolute Continuity Bibliography

Defining Ω1 =
{
|x1 − x j | > d , j > 1

}
,

Ω12 =
{
|x1 − x j | > d , j > 2

}
, etc., we integrate the Liouville

equation to get a hierarchy of distributions:

f 1(x1, ζ1, t) =

∫
Ω1

f Ndx2 · · · dxNdζ2 · · · dζN ,

f 2(x1, x2, ζ1, ζ2, t) =

∫
Ω12

f Ndx3 · · · dxNdζ3 · · · dζN ,

etc. Integrating the Liouville equation (H. Grad, 1958, Principles
of the Kinetic Theory of Gases) we get the BBGKY
(Bogoliubov–Born–Green–Kirkwood–Yvon) hierarchy:

∂t f
1 + ζ1 · ∂x1f 1 = (N − 1)

∫
∂S12

f 2(ζ2 − ζ1) · dS12dζ2,

etc., where S12 =
{
x2; |x2 − x1| < d

}
.
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Boltzmann Equation

We now invoke molecular chaos hypothesis:

f N(x1, · · · , xN , ζ1, · · · , ζN , t) = ΠN
i=1f 1(x i , ζ i , t)

if true at t = 0 would propagate for t > 0, and N →∞, we get
the Boltzmann equation:

∂t f + ζ · ∂x f + F · ∂ζf = Q(f , f ).

Here the collision operator

Q(f , f )(ζ) =

∫
R3

∫
S2

+

[
f (ζ′)f (ζ′∗)− f (ζ)f (ζ∗)

]
B(|ζ−ζ∗|, θ)dndζ∗,

with

ζ′ = ζ − [(ζ − ζ∗) · n]n and ζ′∗ = ζ∗ + [(ζ − ζ∗) · n]n

where for hard sphere models
B(|ζ − ζ∗|, θ) = (ζ − ζ∗) · n = |ζ − ζ∗|cosθ.
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Properties of the Collision Integral

It can be shown that the collision invariants:∫
R3

Q(f , f )dζ = 0;∫
R3

ζQ(f , f )dζ = 0;

and ∫
R3

|ζ|2Q(f , f )dζ = 0.

Moreover for Maxwellian distribution:

M(ρ,v ,θ) = fM(x , ζ, t) =
ρ(x , t)

(2πRθ(x , t))3/2
e
− |ζ−v(x,t)|2

2Rθ(x,t)

where ρ, θ are density and temperature (will be defined shortly )
and we have:

Q(M(ρ,v ,θ),M(ρ,v ,θ)) = 0.
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Boltzmann to Euler/Navier-Stokes equations

Define macroscopic variables (density, momentum and internal
energy):

ρ(x , t) =

∫
R3

f (x , ζ, t)dζ, (density),

ρ(x , t)v(x , t) =

∫
R3

ζf (x , ζ, t)dζ, (momentum),

ρ(x , t)e(x , t) =

∫
R3

|ζ − v |2

2
f (x , ζ, t)dζ, (internal energy),

ρ(x , t)E (x , t) =

∫
R3

|ζ|2

2
f (x , ζ, t)dζ, (total energy),

and total energy ρE = ρe + 1
2ρ|v |

2.
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We will also need macroscopic variables stress P = {Pij}1≤i ,j≤3,
pressure p and heat flux q = {qi}1≤i≤3:

Pij(x , t) =

∫
R3

(ζ i − v i )(ζ j − v j)f (x , ζ, t)dζ, stress tensor,

p(x , t) =
P11 + P22 + P33

3
=

1

3

∫
R3

|v − ζ|2

2
f (x , ζ, t)dζ pressure,

qi (x , t) =

∫
R3

(ζ i − v i )
|v − ζ|2

2
f (x , ζ, t)dζ, heat flux.

We will multiply the Boltzmann equation by respectively 1, ζ and
1
2 |ζ|

2 and integrate in the velocity space to get the mass,
momentum and the energy equations of fluid mechanics.
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We arrive at the conservation laws of fluid dynamics:

∂tρ+ ∂x · (ρv) = 0, Conservation of mass,

∂t(ρv) + ∂x · (ρv ⊗ v + P) = 0, conservation of momentum,

∂t(ρE ) + ∂x · (ρvE + Pv + q) = 0, conservation of energy.

Note that these set of equations are not closed as we have (noting
symmetry for P) 14 unknowns and 5 equations.
So need to find additional equations for P and q. In continuum
mechanics one uses Cauchy-Newtonian hypothesis to close the
problem.
Harold Grad (1948,1958) used truncated Hermite multinomial
expansion of f (x , ζ, t) to obtain a total of 14 equations (6 for P
and 3 for Q) by taking additional moments of the Boltzmann
equation.
We also note that for Maxwellian distribution f = M(ρ,v ,θ), we get
P ij = pδij and q = 0 so we have automatic closure and arrive at
the Euler equations of Fluid dynamics.
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Grad’s H-Theorem

Defining

H =

∫
R3

f log fdζ (entropy) , and H =

∫
R3

ζf log fdζ (entropy flux)

we multiply the Boltzmann equation by log f and integrate in the
velocity space to get

∂tH+∂xH =
1

4

∫
R3

∫
R3

∫
S3

+

[f ′f ′∗−ff∗] log
ff∗

f ′f ′∗
B(|ζ−ζ∗|, θ)dndζ∗dζ ≤ 0,

and also the integral on the right is zero for Maxwellian
distribution since Q(M(ρ,v ,θ),M(ρ,v ,θ)) = 0.
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Pioneers of Statistical Theory of Turbulence

Figure: Osborne Reynolds

Figure: G. I. Taylor, A. Kolmogorov, S. Chandrasekhar, E. Hopf
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Some Classic Books
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Reynolds Averaging and Reynolds Stress: Osborne
Reynolds, (1895)

Start with the Navier-Stokes or the Euler equations and set
u = U + z where U is a suitable average such as

U = E [u] or U = lim
T→∞

1

T

∫ t+T

t
u(τ)dτ or

∫
Rn

K (x − y)u(y , t)dy .

Substituting in to the Navier-Stokes and taking average yields

∂U

∂t
+ U · ∇U = −∇P + ν∆U − Div(E [z ⊗ z ]), (5)

divU = 0. (6)

Ergodicity for 3-D Navier-Stokes with Gaussian Noise by G. Da
Prato and A. Debussche and with Levy noise by Manil T. Mohan,
K. Sakthivel and S.S.S.
The tensor (closure) term Rij = E [z iz j ] is called the Reynolds
Stress and is unknown at this point.
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Turbulence Modeling: Eddy Viscosity Models

Let Rij = −E [z iz j ] = 2µTSij where Sij = 1
2

(
∂Ui
∂xj

+
∂Uj

∂xi

)
, we get

∂U

∂t
+ U · ∇U = −∇P + Div[(ν + µT )∇U] (7)

The simplest way to close it is by L. Prandtl (α = 1 below):
The turbulent eddy viscosity µT is modeled as

µT = L2
mix(2SijSij)

α/2

Interestingly this will give global unique solvability to the Reynolds
averaged equation for α ≥ 2 because this closure hypothesis will
make the viscous term (in blue) maximal monotone.
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Turbulence Closure Modeling- K-Epsilon model

The next level of closure is as follows: Let µT = k2

ε , then the
turbulence kinetic energy k = E [|z |2] and turbulence dissipation
ε = E [|∇z |2] are given by

∂k

∂t
+ U · ∇k = µTS2 − ε+ Div [(ν + µT )∇k] , (8)

∂ε

∂t
+ U · ∇ε =

ε

k
(µTS2 − ε) + Div [(ν + µT )∇ε] . (9)

The system of equations (7,8,9) is called k-epsilon turbulence
closure model.
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John von Neumann’s nice review: Recent Theories of
Turbulence, 1949, ONR Report

Figure: John von Neumann: Recent Theories of Turbulence (1949)
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Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic
Compressible Navier-Stokes Equations (1959)

∂ρ

∂t
+ div(ρv) = 0, (10)

ρ(
∂vi
∂t

+ vk
∂vi
∂xk

) = − ∂p

∂xi
+
∂σ′ik
∂xk

, i = 1, · · · , n, (11)

ρT (
∂s

∂t
+ v · ∇s) =

1

2
σ′ik(

∂vi
∂xk

+
∂vk
∂xi

)− divq, (12)

where

σ′ik = η(
∂vi
∂xk

+
∂vk
∂xi
− 2

3
divv) + ζδikdivv + sik , (13)

and
q = −κ∇T + g . (14)
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Here the correlation structure of random heat flux vector g and
random stress tensor sik would look like:

E [sik(t1, r1)gj(t2, r2)] = 0, (15)

E [gi (t1, r1)gk(t2, r2)] = 2κT 2δikδ(r1 − r2)δ(t1 − t2), (16)

E [sik(t1, r1)slm(t2, r2)]

= 2T

(
η(δilδkm + δimδkl) + (ζ − 2

3
η)δikδlm

)
δ(r1 − r2)δ(t1 − t2).

(17)
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Early Works on Rigorous Theory of Statistical and
Stochastic Navier-Stokes Equations

E. Hopf (1952) - Statistical theory of Navier-Stokes equations
with random initial data.
C. Foias (1972,73) - Rigorous treatment of Hopf equations for
statistical solutions of Navier-Stokes equations.
A. Bensoussan and R. Temam (1973) - Rigorous treatment of
stochastic Navier-Stokes equations with Gaussian noise.
M. I. Vishik and A. Fursikov (1988) Rigorous treatment of
several aspects of statistical and stochastic Navier-Stokes
equations

25 / 118



History and Motivation: Why Stochastic Navier-Stokes Equations? Hypersonics Hierarchy & Hilbert’s Sixth Problem: From Liouville to Boltzmann to Euler/Navier Stokes Equations Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic Compressible Navier-Stokes Equations Stochastic Incompressible and Compressible Euler Equations Stochastic Compressible Navier-Stokes Equations Various Models from Mechanics and Physics: MHD, General Relativity and Quantum Physics Navier-Stokes Equation and Euler Equations with Gaussian and Levy Noise and Random Initial data Statistical Theory of Turbulence-Rigorous Aspects Ergodicity and Large Deviations Control and Filtering Hormander Condition and Malliavin Calculus: Hypoellipticity, Controllability and Absolute Continuity Bibliography

Stochastic Incompressible Euler Equations

∂u

∂t
+ u · ∇u = −∇p + Γ, (18)

divu = 0, (19)

u · n|∂G = 0, (20)

u(x , 0) = u0. (21)

Abstractly
du + B(u)dt = dM t , t > 0, (22)

u(0) = u0 ∈ H . (23)

1 M t = W t an H-valued Wiener process with covariance Q,

2 dM t = Φ(u)dW t multiplicative Gaussian noise

3 dM t = Φ(u)dW t +
∫
Z

Ψ(u, z)dN(t, z) where N(·, ·) is a
Poisson random measure and M t is an H-valued Lévy process.
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The key here is Kato’s observations in deterministic Euler
equations:(1) (B(u)),u) = 0 and this leads to the L2(Rn)
invariance ‖u(t)‖L2(Rn) = ‖u(0)‖L2(Rn). (2) To get higher order
Sobolev estimates Kato used what is now known as The
Kato-Ponce Commutator Estimate:

‖Js(fg)− f (Jsg)‖Lp(Rn)

≤ C
[
‖∇f ‖L∞(Rn)‖Js−1g‖Lp(Rn) + ‖Js f ‖Lp(Rn)‖g‖L∞(Rn)

]
,

for 1 < p <∞ and s > 0, where Js := (I −∆)s/2 is the Bessel
potential. We now apply Js to the Euler equation and rearrange
with notation v s = Jsu then

∂tu
s+B(u, v s) = B(v s , v)−JsB(u,u) = PHu·∇(Jsu)−JsPHu·∇u

and apply Kato-Ponce inequality to the commutator also noting
(B(u, v s), v s) = 0 we get a local estimate for the Hs(Rn-norm for
s > n/2 + 1 -stochastic case is obtained with the help of Ito
formula and stopping times. Ideas are similar in the quasilinear
hyperbolic systems discussed next. Note that in Rn,PHJs = JsPH .

27 / 118



History and Motivation: Why Stochastic Navier-Stokes Equations? Hypersonics Hierarchy & Hilbert’s Sixth Problem: From Liouville to Boltzmann to Euler/Navier Stokes Equations Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic Compressible Navier-Stokes Equations Stochastic Incompressible and Compressible Euler Equations Stochastic Compressible Navier-Stokes Equations Various Models from Mechanics and Physics: MHD, General Relativity and Quantum Physics Navier-Stokes Equation and Euler Equations with Gaussian and Levy Noise and Random Initial data Statistical Theory of Turbulence-Rigorous Aspects Ergodicity and Large Deviations Control and Filtering Hormander Condition and Malliavin Calculus: Hypoellipticity, Controllability and Absolute Continuity Bibliography

Compressible Euler Equations can effectively capture shock
waves in Transonic and Supersonic Flow
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Stochastic Compressible Euler Equations

We can develop a general theory for quasilinear hyperbolic system
of conservation laws

dU + (
n∑

i=1

Ai (U)∂x iU)dt = dM(U , x , t), (x , t) ∈ Rn × [0,T ],

U(x , 0) = U0(x), x ∈ Rn.

Here A1,A2, · · · are symmetric N × N matrices and U ∈ RN with
N being the number of physical variables.The system is said to be
hyperbolic when the matrix

A =
n∑

i=1

wiAi has real eigenvalues for w ∈ Rn with |w | = 1.
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Local and Global Solvability with Levy Noise

Theorem

Let U0 ∈ L4(Ω; Hs(Rn)) for s > n/2 + 2, then
I. there exists a unique local strong solution (U , τ) to the
stochastic quasilinear symmetric hyperbolic system with Levy noise.
Here τ > 0 is a stopping time with respect to {Ft}t≥0 such that

τ(ω) = lim
N→∞

τN(ω) for almost all ω,

where we define for N ∈ N, τN(ω) := inft≥0 {t : ‖U(t)‖Hs ≥ N} ,
and

U ∈ L4(Ω; D(0, τ(ω); Hs(Rn)),

where D(0, τ(ω); Hs(Rn) is the space of all cadlag paths from
[0, τ)→ Hs(Rn) and
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Local and Global Solvability theorem continuation...

Theorem

U satisfies

U(t ∧ τN , x) = U(0, x)−
∫ t∧τN

0

n∑
i=1

Ai (U , x , r)∂x iU(r , x)dr

+

∫ t∧τN

0
Φ(r ,U(r))dW (r) +

∫ t∧τN

0

∫
Z

Γ(r−,U−)N (dz , dr)

for all t ∈ [0,T ], for all N ≥ 1 and for almost all ω ∈ Ω.
II. For any 0 < δ < 1 and β ≥ 1, ( positive stopping time):

P{ω ∈ Ω; τ > δ} ≥ (1− Cδ2/β)
(
1 + E [‖U0‖2

Hs ]
)

III. For ε > 0, ∃κ(ε) > 0 such that if E [‖U0‖4
Hs ] <∞ then (global

solution):
P {ω ∈ Ω; τ = +∞} ≥ 1− ε.
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Stochastic Compressible Navier-Stokes Equations

dρ+ div(m)dt = 0, (24)

dm +

[
div(m ⊗ m

ρ
)− divS(∇m

ρ
) + a∇ργ

]
dt

= ρf dt + Φ(ρ,m))dW +

∫
U

Ψ(ρ,m, z)dN(t, z), (25)

where m = ρu, γ > N/2 and

S = S(∇u) = ν

(
∇u + (∇u)T − 2

3
divuI

)
+ ηdivuI.
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Let us consider a class of Borel probability measures P defined on

Borel algebra B(L∞(0,T ; Lγ(G ))× D(0,T ; L
2γ
γ+1 (G )) that saisfies

EP

[
sup

t∈[0,T ]

(
‖ρ(t, ·)‖pLγ(G) + ‖m(t, ·)‖p

L
2γ
γ+1 (G)

)

+

(∫ T

0
‖m
ρ
‖2
W 1,2(G)dt

)p
]
<∞.

Denote:

E(t) =

∫
G

(
1

2
ρ|u|2 +

a

γ − 1
ργ
)

dx .
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Martingale Solutions of Compressible Navier-Stokes
Equations

Theorem

Let γ > 3/2 and 1 ≤ p <∞. Let the initial law of
(ρ(x , 0),q(x , 0)), P0 be a Borel probability measure on

Lγ(G )× L
2γ
γ+1 (G ) with moments:∫

Lγ(G)×L
2γ
γ+1 (G)

‖1

2

|q|2

ρ
+

a

γ − 1
ργ‖p

L1
x
dP0(ρ,q) <∞.

Then the martingale solution P exists with moments

EP

[
sup

0≤t≤T
E(t) +

∫ T

0

∫
G

(
µ|∇u|2 + λ|divu|2

)
dxds

]p

≤ CEP0 [(E(0) + 1)p] .
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Approximation Method (P. L. Lions for Deterministic Case)

We start with a stochastic counterpart of P. L. Lions scheme for
weak solutions to compressible Navier-Stokes (which is in tun the
compressible counterpart of E. Hopf-J. Leray weak solutions to
incompressible Navier-Stokes);

dρ+ div(m)dt = ε∆ρdt,

dm +

[
div(m ⊗ m

ρ
)− divS(∇m

ρ
) + a∇ργ + δ∇ρβ + ε∇u∇ρ

]
dt

= ρf dt + Φ(ρ,m))dW +

∫
U

Ψ(ρ,m, z)dN(t, z), (26)

where β > max{9/2, γ}. Denote:

Eδ(t) =

∫
G

(
1

2
ρ|u|2 +

a

γ − 1
ργ +

δ

β − 1
ρβ
)

dx .
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Then the three levels of approximations (artificial viscosity for the
density equation, artificial pressure in momentum to save the
energy inequality and finite dimensional projection to start the
approximation process) gives a probability law PεN,δ and the
estimate below is the key to sequential weak limit of probability
laws:PεN,δ => Pεδ => Pδ => P:

EPεN,δ

[
sup

0≤t≤T
Eδ(t) +

∫ T

0

∫
G

(
µ|∇u|2 + λ|divu|2

)
dxds

+ε

∫ T

0

∫
G

(aγργ−2 + δβρβ−2)|∇ρ|2dxds

]p
≤ CEP0 [(Eδ(0) + 1)p] .
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Topological Invariants in MHD and Inviscid Fluid Dynamics

H. K. Moffatt (”Degree of Knottedness of Tangled Vortex Lines,
JFM, 1968). We start with 3− D inviscid fluid dynamics: u
velocity and w vorticity,

∂u

∂t
+ u · ∇u = −∇p,

∂w

∂t
+ u · ∇w = w · ∇u.

Then we have the following two invariants for time evolution:∫
|u|2dx = E (total kinetic energy),

∫
u ·wdx = H ( Helicity).

For example for two Helmholtz vortex rings with strengths κ1, κ2,
H = ±κ1κ2 if they are linked and H = 0 if un-linked. Helicity H
is a topological invariant in time.
Army applications: Helicopter blade tip vortices, bubble vortex
breakdown, turbine vortices, jet mixing.

37 / 118



History and Motivation: Why Stochastic Navier-Stokes Equations? Hypersonics Hierarchy & Hilbert’s Sixth Problem: From Liouville to Boltzmann to Euler/Navier Stokes Equations Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic Compressible Navier-Stokes Equations Stochastic Incompressible and Compressible Euler Equations Stochastic Compressible Navier-Stokes Equations Various Models from Mechanics and Physics: MHD, General Relativity and Quantum Physics Navier-Stokes Equation and Euler Equations with Gaussian and Levy Noise and Random Initial data Statistical Theory of Turbulence-Rigorous Aspects Ergodicity and Large Deviations Control and Filtering Hormander Condition and Malliavin Calculus: Hypoellipticity, Controllability and Absolute Continuity Bibliography

Figure: Bubble Vortex Breakdown
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L. Woltzer (1958) - Helicity in MHD

Magnetic field B = ∇× A, then the inviscid, non-resistive MHD
system:

∂A

∂t
= u × (∇× A)−∇φ, ∂B

∂t
= ∇× (u × B),

∂u

∂t
+ u · ∇u = −∇p + j × B.

We then have the following two time invariants:∫
A · Bdx = Magnetic Helicity, and

∫
u · Bdx = Cross Helicity.

39 / 118



History and Motivation: Why Stochastic Navier-Stokes Equations? Hypersonics Hierarchy & Hilbert’s Sixth Problem: From Liouville to Boltzmann to Euler/Navier Stokes Equations Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic Compressible Navier-Stokes Equations Stochastic Incompressible and Compressible Euler Equations Stochastic Compressible Navier-Stokes Equations Various Models from Mechanics and Physics: MHD, General Relativity and Quantum Physics Navier-Stokes Equation and Euler Equations with Gaussian and Levy Noise and Random Initial data Statistical Theory of Turbulence-Rigorous Aspects Ergodicity and Large Deviations Control and Filtering Hormander Condition and Malliavin Calculus: Hypoellipticity, Controllability and Absolute Continuity Bibliography

Madelung Transform for Quantum Fluids, Photonics,
Superconductivity

Consider the nonlinear Schrodinger equations:

i}
∂

∂t
ψ(x , t) +

}2

2
∆ψ(x , t)− V (|ψ|)ψ(x , t) = 0.

Madelung (1927): start with the wave function in the polar form

ψ(x , t) =
√
ρ(x , t)e

i
}S(x ,t) and u(x , t) = ∇S(x , t),

to get the quantum fluid dynamic description:

∂

∂t
ρ+∇ · (ρu) = 0,

∂

∂t
u + u · ∇u = −∇(Q + V (

√
ρ)),

where the Q is the quantum pressure: Q = −}2

2
∆
√
ρ√
ρ .

Could give insight in to topological aspects of photonics and
quantum fluids.
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Stochastic Quantum Fluid Dynamics

We start with the Nonlinear Schrodinger equation

i∂tψ +
1

2
∆ψ = f (|ψ|2)ψ + Γ1

and apply the Madelung transform

ψ(t, x) =
√
ρ(t, x)eiφ(t,x)

setting u = ∇φ we get,

∂tu + u · ∇u +∇f (ρ) =
1

2
∇
(

∆(
√
ρ

√
ρ

)
+ Γ2 (27)

∂tρ+ div(ρu). (28)
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Stochastic Magnetohydrodynamic System

∂ρ

∂t
+ div(ρu) = 0,

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p +

1

µ
(∇× B)× B + divτ + Γ1,

∂B

∂t
= ∇× (u × B) + η∆B + Γ2,

divB = 0.

Results on martingale solutions are similar to that for stochastic
compressible Navier-Stokes equations.
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Stochastic Navier-Stokes with Hyper, Nonlinear, Non-local
and Hereditary Viscosity Models

du + [νAu + µ1A(u) + B(u)

+µ2

∫ t

0
K (t − r)A1u(r)dr

]
dt = dM t , t > 0,

u(0) = u0 ∈ H .
Nonlinear operator A models either (local or non-local) eddy

viscosity in turbulence closure models or non-Newtonian fluids: A
is maximal monotone. Hereditary integral term encodes the history
of strain. A1 is a self-adjoint positive definite operator such as the
negative of Laplacian operator( −∆).

The introduction of A makes 3-D case behave like 2-D case. If
ν = 0, µ1 = 0 then the mathematical structure of the problem is
similar to Euler equations of fluid dynamics with or without the
heriditary term.
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Some examples of the artificial viscosity operator A
1 Hyperviscosity A(u) = −(−1)m∆mu

2 Maximal monotone p-Laplacian A(u) = −∇(|∇u|p−2∇u)

3 (non-local viscosity) A(u) = −(1 + ‖∇u‖2
L2(G))∇u

All the above will give global solvability for 3-D Navier-Stokes. It is
also possible to regularize the inerta term as:

1 B̃(u) = B(K ? u,u). A particular example of such a kernel is
K = A−α gives the Navier-Stokes α-model.

It is also possible to modify the nonlinear term so that
νAu + B̃(u) + λu will become locally maximal monotone as in
Barbu and Sritharan (2001) and also Menaldi and Sritharan (2002)
for another observation of local monotonicity) -both methods have
been applied in several papers in the literature since then.
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Navier-Stokes Equation with Gaussian and Levy Noise

Let (Ω,Σ,m) be a complete probability space. We consider first
the incompressible Navier-Stokes equation with random initial data
and stochastic force:

∂u

∂t
+ u · ∇u = −∇p + ν∆u + Γ, (29)

divu = 0, (30)

u(x , 0) = u0 (31)

Here u(x , t, ω), p(x , t, ω) are the velocity and and pressure fields
respectively and defined on G × [0,T ]× Ω where G ⊆ Rn and
u0(x , t, ω) is the random initial data with probability distribution
µ0 and Γ(x , t, ω) is the stochastic body force which will be
characterized next.
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Mathematical Preliminaries

Useful basic function spaces

Let G ⊆ Rn, n = 2, 3 be an open set with smooth boundary ∂G .

1 H = {u : G → Rn,u ∈ Lp(G ),divu = 0, (u · n)|∂G = 0}
2 V = {u : G → Rn,u ∈W 1,p

0 (G ), divu = 0}
3 D(A) = W 2,p(G ) ∩V , where p ≥ 2, and Au = −PH∆u, with

PH : Lp(G )→ H is the Hodge projection.

We can also define Banach scales

D(Aα) =

{
W 2α,p

0 (G ) ∩H if 1/2p < α < 1
W 2α,p(G ) ∩H if α < 1/2p (32)
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Statistical Theory of Turbulence:
Hopf-Foias-Vishik-Fursikov

Deterministic Navier-Stokes Equation with Random Initial
Data

d

dt
u + νAu + B(u) = f (t), t > 0, (33)

u(0) = u0 ∈ H . (34)

Here u0 : Ω→ H is a Σ/B(H)-measurable map with law µ0:

µ0(C ) = m {ω ∈ Ω;u0(ω) ∈ C} ,∀C ∈ B(H).

We will work with initial measures that satisfy:∫
H
‖u0‖2µ0(du0) <∞. (35)
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Concepts in Statistical Solutions

If we can characterize measurable maps:

a map from initial data to solution at time t,

S(t, ·) : u0 → u(t),

and, a map from initial data to the entire path of the solution:

W(·) : u0 → {u(t), 0 ≤ t ≤ T} ,

then we can define the spatial statistical solution as

µt(·) := µ0 ◦ S(t)−1(·)

and the space-time statistical solution as

P(·) = µ0 ◦W−1(·).
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(Spatial) Statistical Solutions

Theorem

There exists a family of measures µt(·), 0 ≤ t ≤ T , such that
µt |t=0 = µ0, µt(·) is concentrated on H for every t ∈ [0,T ],
concentrated on V for almost all t ∈ [0,T ], the characteristic
functional χ(t, v) =

∫
H e i<v ,w>µt(dw), ∀v ∈ D(As/2) satisfies the

Hopf equation:

∂

∂t
χ(t, v) + i

∫
H
< Aw + B(w)− f , v > e i<w ,v>µt(dw) = 0,

for almost all t ∈ [0,T ]. Moreover, µt(·) satisfy the energy
inequality:∫
H
‖w‖2µt(dw)+

∫ T

0

∫
V
‖A1/2w‖2µt(dw)dt ≤ C

∫
H
‖u0‖2µ0(dw).
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Uniqueness of (Spatial) Statistical Solutions

Foias proved in (C. Foias, ”Statistical Study of Navier-Stokes
Equations-I”, Rend. Semin. Mat. Padova, 48, (1972), pp
219-348.) that
The spatial statistical solutions of the Foias equation
below is unique for the 2-D Navier-Stokes case provided∫ T

0

∫
H
‖u‖2eC‖u‖

4
µt(du)dt <∞,

which holds if the initial measure has the same bound:∫ T

0

∫
H
‖u0‖2eC‖u0‖4

µ0(du)dt <∞.

V. I. Gishlarkaev (J. Mathematical Sciences, Vol. 169, No. 1,
2010, pp. 64-83) improved this result and proved that uniqueness
holds if ∫

H

‖u0‖2µ0(du) <∞.
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Space-Time Statistical Solutions

Let us define function spaces

Z := L2(0,T : H) ∩ C (0,T ; D(A−s/2)),

and

U :=

{
u ∈ L2(0,T ;V ) ∩ L∞(0,T ;H);

∂

∂t
u ∈ L∞(0,T ; D(A−s/2))

}
.

Definition

A space time statistical solution corresponding to an initial
measure µ0 is a probability measure P(C ),C ∈ B(Z) having the
following properties:

P is concentrated on U ; P(U) = 1;

there is a set W ⊂ U , closed such that W ∈ B(Z),P(W = 1),

W consists of solutions of the Navier-Stokes eqations;
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Space-Time Statistical Solutions -Continuation

Definition

(Continuation)

restriction of P to t = 0 coincides with µ0,
∀C ∈ B(D(A−s/2)),

γ∗0P(C ) = P(γ0C ) = P(u ∈ Z;u(0, ·) ∈ C ) = µ0(C ).

an energy inequality holds: for any ε > 0 and t ∈ [0,T ]∫ (
‖u(t, ·)‖2

H + (2ν − ε)
∫ t

0
‖∇u(τ, ·)‖2

Hdτ

)
P(du)

≤
∫
H
‖u0‖2µ0(du0) +

1

ε

∫ t

0
‖f (τ, ·)‖2

−1dτ.
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Space Time Statistical Solution- Continuation

Definition

(Continuation)

we also have the estimate∫ (
sup

0≤t≤T
(‖u‖2

H + ‖A−s/2∂u

∂t
‖H

)
P(du)

≤ C

(∫
H
‖u0‖2µ0(du0) + ‖A−1/2f (τ, ·)‖2dτ

)
s > n/2 + 1.

Theorem

For two and three dimensional Navier-Stokes equation with initial
distribution having finite second moment

∫
H ‖u0‖2µ0(du0) <∞,

there exists a space-time statistical solution P with above
properties. Moreover, it is unique (under same condition) for
two dimensions.
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Stochastic Navier-Stokes equation in Abstract form

du + (νAu + B(u))dt = dM t , t > 0, (36)

u(0) = u0 ∈ H . (37)

Where M t is a local semi-martingale and typical examples are:

1 M t = W t an H-valued Wiener process with covariance Q,

2 dM t = Φ(u)dW t multiplicative Gaussian noise

3 dM t = Φ(u)dW t +
∫
Z

Ψ(u, z)dN (t, z) where N (·, ·) is a
(compensated) Poisson random (martingale) measure and M t

is an H-valued Lévy process.

Note that formally Γ is the generalized time derivative of M , i.e.
Γ = d

dtM in the generalized sense.
Unfortunately the stochastic terms in the Landau-Lifshitz
hydrodynamic fluctuation equations are not H-valued martingales
but rather belong to larger space of generalized functions
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Let Q ∈ L(H ;H) be a linear symmetric operator that is positive
and trace class: TrQ <∞. An H-valued Wiener process W (t) has
stationary and independent increments with the correlation
operator defined by:

E [(W (t),φ)H(W (τ),ψ)H ] = t ∧ τ(Qφ,ψ)H , ∀φ,ψ ∈ H .

Also {λi , φi}∞i=1 be the eigen system of Q then we have

TrQ =
∞∑
i=1

λi <∞,

and we have the representation:

W (t) =
∞∑
i=1

√
λiφiβi (t),

where βi (t) are one dimensional independent Brownian motions.
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Lévy Process and Poisson Random Measure

Definition

Let E be a Banach space. An E -valued stochastic process is a
Lévy process if

1 L(0) = 0, a.s.;

2 L has stationary and independent increments;

3 L is stochastically continuous: for all bounded and measurable
functions φ the function t → E [φ(L(t))] is continuous on R+

4 L has a.s. cádlág paths.

Special Cases: When the increments are Gaussian distributed the
process is called Brownian motion (or Wiener process) and when
the increments are Poisson distributed then it is called Poisson
process.
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Lévy Process and Poisson Random Measure -continuation..

Let L be a real valued Lévy process and let A ∈ B(R). We define
the counting measure:

N (t,A) = #
{

s ∈ (0,T ]; ∆L(s) = L(s)− L(s−) ∈ A
}
∈ N ∪ {∞}.

then we can show that

1 N (t,A) is a random variable over (Ω,F ,P);

2 N (t,A) ∼ Poisson(tν(A)) and N (t, ) = 0;

3 For any disjoint sets A1, · · · ,An the random variables
N (t,A1), · · · ,N (t,An) are pairwise independent.

Here ν(A) = E [N (1,A)] is a Borel measure called Lévy measure.
Compensated Poisson process will then be the martingale:

N̄ (t,A) = N (t,A)− tν(A), ∀A ∈ B(R).
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Martingale Problem

Path space is the Lusin space:

Ω := L2(0,T ;H) ∩ D([0,T ];V ′) ∩ L2(0,T ;V )σ ∩ L∞(0,T ;H)w∗ .

Here D([0,T ];V ′) is the Skorohod space of V ′-valued Cadlag.
Σt = σ {u(s), s ≤ t} .
The martingale problem is to find a Radon probability measure P
on the Borel algebra B(Ω) such that

Mt := u(t) +

∫ t

0
(νAu(s) + B(u(s))− U(s))ds (38)

is an H-valued (Ω,B(Ω),Σt ,P) -martingale (i.e. a Σt-adapted
process such that E [Mt |Σs ] = Ms) with quadratic variation process

<< M >>t=

∫ t

0
Φ(u(s))QΦ∗(u(s))ds

+

∫ t

0

∫
Z

Ψ(u(s), z)⊗Ψ(u(s), z)dν(z)dt.
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Martingale Solutions

Theorem

Martingale (weak) Solution for 2-D and 3-D For two and three
dimensional stochastic Navier-Stokes equation in arbitrary
domains, there exists a martingale solution P which is a Radon
probability measure supported in the subset of paths satisfying the
following bounds:

EP

[
sup

t∈[0,T ]
‖u(t)‖2 + ν

∫ T

0
‖A1/2u(t)‖2dt

]

≤ E

[
‖u0‖2 +

∫ T

0
‖U(t)‖2

−1dt

]
+ Tr << M >>T . (39)

Moreover, the martingale solution is unique in two dimensions.
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Strong solutions

Theorem

Strong Solution for 2-D bounded and unbounded domains Let
(Ω,Σ,Σt ,m) be a complete filtered probability space and W (t) be
an H-valued Wiener process and let N(·, ·) be a compensated
Poisson measure with Lévy measure ν(·).Let the control function
U(·) ∈ L2(Ω; L2(0,T ; V ′)) be adapted to Σt and the initial data
be u0 ∈ L2(Ω;H). Then there exists a unique strong solution
u ∈ D([0,T ];H) ∩ L2(0,T ;V ), a.s. and adapted to Σt such that

E

[
sup

t∈[0,T ]
‖u(t)‖2 + ν

∫ T

0
‖A1/2u(t)‖2dt

]

≤ E

[
‖u0‖2 +

∫ T

0
‖U(t)‖2

−1dt

]
+ Tr << M >>T . (40)
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Comment on Covariance Operator Q and higher order
moments

Open Problem The above theorems require TrQ <∞. The
”non-degenerate”case of Q = I is open for martingale solutions,
strong solutions as well as mild solutions discussed next.

Theorem

Higher Order Moments Under additional hypothesis that is
obvious from the estimate below, the solution has the following
estimate: For l ≥ 1,

E

[
sup

t∈[0,T ]
‖u(t)‖2l + ν

∫ T

0
‖u(t)‖2l−2‖A1/2u(t)‖2dt

]

≤ E

[
‖u0‖2l +

∫ T

0
‖U(t)‖2l

−1dt

]
+ C (trQ, ν). (41)
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Mild Solutions

Theorem

Let (Ω,F , (Ft)t≥0,P) be a given filtered probability space and let
a ∈ Jm = PLm be F0-measurable with ‖a‖m <∞, a.s. Then,
there exists a stopping time τ(ω) ∈ (0,T ) and a unique mild
solution u, which is Ft-adapted with cadlag paths, to the
stochastic Navier-Stokes equations in the mild form

u(t) = e−(t∧τ)Aa −
∫ t∧τ

0
e−(t∧τ−s)AB(u(s))ds

+

∫ t∧τ

0
e−(t∧τ−s)AΦdW (s)+

∫ t∧τ

0

∫
Z

e−(t∧τ−s)AΨ(s−, z)N (dz , ds),

for all t ∈ (0,T ) such that
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Theorem

(Continuation....)

t(1−m/q)u ∈ L∞(0, τ(ω);Jq), for m ≤ q <∞

t(1−m/q)∇u ∈ L∞(0, τ(ω);Jq), for m ≤ q <∞.

Also, for 0 < ρ < 1, we have

P{τ(ω) > ρ} ≥ 1− ρ2M,

where M is a constant dependent of a,Φ,Ψ. Moreover, if
‖a‖m + ζ assumed to be sufficiently small a.s where ζ is a constant
depends on ΦandΨ then the solution u is global τ ∧ T = T .
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Homogeneous Statistical Solutions: Vishik, Komech and
Fursikov

Consider the stochastic Navier-Stokes system

∂

∂t
u(t, x)+u·∇u = −∇p(t, x)+ν∆u(t, x)+

∂

∂t
W (t, x), t > 0, x ∈ Rn,

∇ · u = 0,

u(0, x) = u0(x), x ∈ Rn.

Probability laws of u0 and W are translation homogeneous:

Definition

A measure µ on B(X ) is called translation homogeneous if

ĥ∗µ(A) = µ(A), ∀A ∈ B(X ), ∀h ∈ Rn, where

ĥu(x) = u(x + h), and ĥ∗µ(A) = µ(ĥ−1A). Equivalently,∫
X

f (u)µ(du) =

∫
X

f (ĥu)µ(du), ∀f ∈ Cb(X ),∀h ∈ Rn.
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Existence Theorem for Homogeneous Statistical Solutions

Theorem

Let the initial distribution µ0 and the Wiener measure Λ be
x-homogeneous, then there exists a space time statistical solution
P that is x-homogeneous and satisfies the following bound for the
energy density∫ (

|u(x , t)|2 + 2ν

∫ t

0
|∇u(τ, x)|2dτ

)
P(du)

≤
∫
|u0(x)|2µ(du0) +

∫
|W (t, x)|2Λ(dW ).
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Ergodicity

For φ ∈ Bb(H) define transition semigroup:

P(t)φ(u0) = E [φ(u(t,u0))], u0 ∈ H .

If the initial data u0 is random with distribution µ then the law of
u(t,u0) is P∗(t)µ. µ is called an invariant measure if

P∗(t)µ = µ, t ≥ 0.

Existence of invariant measures for stochastic Navier-Stokes
equations is a consequence of the energy inequality (Chow and
Khasminskii, 1997).
Let µ be an invariant measure. If it is unique then it is ergodic:

lim
T→∞

1

T

∫ T

0
P(t)φ(u0)dt =

∫
H
φ(v)µ(dv), φ ∈ L2(H , µ).
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Theorem

(Doob’s Theorem) Irreducibility and Strong Feller imply
uniquess of invariant measures:

P(t) is irreducible, i.e. P(u(t,u0) ∈ Γ) = P(t)1Γ(u0 > 0 for
all u0 ∈ H and all sets Γ ⊂ H .

P(t) is strong feller, i.e. P(t) : Bb(H)→ Cb(H).

Then if an invariant measure µ exists,

µ is the unique invariant probability measure

The law of u(t,u0) converges to µ:

lim
t→∞

νu(t,u0) = µ.

µ and all probability laws νu(t,u0) are equivalent.
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It can be shown the irreducibility is connected to the
controllability problem of deterministic Navier-Stokes
equation

∂tu + νAu + B(u) = ΦU .

Strong Feller is a consequence of the Bismut-Elworthy-Li formula

DPtφ(u0)·h =
1

t
E

(
φ(u(t,u0))

∫ t

0
(Φ−1S(r , 0)h, dW (r)

)
, (42)

where S(t, 0)Φh = ζ(t) is the solution of the linearized problem
(also Malliavin derivative)

∂tζ(t) + νAζ(t) + B(u(t), ζ(t)) + B(ζ(t),u(t)) = 0,

ζ(0) = Φh.
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We can estimate the Bismut-Elworthy-Li formula as

|DPtφ(u0) · h| ≤ ‖φ‖∞E

(∣∣∣∣∫ t

0
(Φ−1S(r , 0)h, dW (r)

∣∣∣∣)
≤ ‖φ‖∞E

(∫ t

0
‖Φ−1S(r , 0)h‖2dr

)
.

Since in general Φ is not invertable various approximations are
needed to complete the proof.
The concept of asymptotic strong Feller (Hairer and Mattingly)
is shown to be adequate for noise in finite number of modes N:
∃δtn → 0 as tn →∞:

|DPtnφ(u0)| ≤ C (‖u0‖)(‖φ‖∞ + δtn‖Dφ‖∞),

which is connected to the controllability problem for the
linearized deterministic NSE:

∂tζ(t) + νAζ(t) + B(u(t), ζ(t)) + B(ζ(t),u(t)) = PNU ,
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Approximate Controllability of 3-D Navier-Stokes Equation
with finite dimensional Forcing

We will discuss the approximate controllability results of Armen
Shirikyan (Communications on Math Physics, 266, 123–151
(2006))

Theorem

Consider the controlled 3-D Navier-Stokes equation in a bounded
domain in R3

∂tu + νAu + B(u) = h + η,

u(0) = u0 ∈ D(A1/2),

and h ∈ L2
loc(R+;H). Given any T > 0, ε > 0 and any two fields

u0, û ∈ D(A1/2), there exists a control η taking values in a finite
dimensional subspace E ⊂ D(A) with η ∈ L∞(0,T ; E ) and a
solution u ∈ C (0,T ) : D(A1/2)) ∩ L2(0,T ; D(A)) such that

‖u(T )− û‖D(A1/2) < ε.
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Large Deviations-S. R. S. Varadhan’s General Definition

Let S be a Polish space and let Pε be a family of probability
measures on Borel sets B(S) converging to a Dirac measure
δx0 ∈ S . Large deviations theory formalizes the behavior
Pε ∼ e−I/ε.

Definition

We say {Pε} obeys large deviation principle with a rate function I
if there exists a function I : S → [0,∞] satisfying:

1 0 ≤ I (u) ≤ ∞ for all u ∈ S .
2 I (·) is lowersemicontinuous

3 For each l <∞ the set {u ∈ S ; I (u) ≤ l} is compact in S .

4 ∀ closed sets C ⊂ S , lim supε→0 εPε(C ) ≤ − infu∈C I (u).

5 ∀ open sets G ⊂ S , lim infε→0 εPε(G ) ≥ − infu∈G I (u).
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Large Deviations-Small Noise Limit (Wentzell-Freidlin
type)

Theorem

Let Pε is the law of the solution of:

duε(t) + [νAuε(t) + B(uε)] dt = f (t)dt +
√
εΦ(t,uε(t))dW (t).

Then Pε satisfies LDP in C ([0,T ]H) ∩ L2(0,T ; D(A1/2)) with
rate function

I ζ(h) = inf
[V∈L2(0,T ;H0);h(t)=g0(

∫ ·
0 V (s)ds)]

{
1

2

∫ T

0
‖V ‖2

0dt

}
,

where uV = g 0(
∫ ·

0 v(s)ds) solves the deterministic controlled
Navier-Stokes equation

d

dt
uV (t) + νAuV (t) + B(uV ) = f (t) + Φ(t,uV (t))V (t).
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Large Deviations-Large time limit (Donsker-Varadhan type)

Let us define the occupation measures Lt(·) ∈M(H) of the
solutions u(t) as Lt(A) := 1

t

∫ t
0 δu(s)(A)ds, ∀A ∈ B(H).

Theorem

The probability laws of the occupation measures Pν(LT ∈ ·) as
T →∞ satisfies large deviation property with rate function J,
uniformly with respect to initial measure ν, where
J :M(H)→ [0,∞] is the Donsker-Varadhan entropy:
For all open sets G ∈M(H)

lim inf
T→∞

1

T
log inf

ν∈M
Pν(LT ∈ G ) ≥ −infGJ

For all closed sets C ∈M(H)

lim sup
T→∞

1

T
log sup

ν∈M
Pν(LT ∈ C ) ≤ −infCJ.
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Donsker-Varadhan Entropy

Let E = D(A1/2) and consider a general E -valued continuous
Markov process u(t),

(Ω, (Ft≥0),F , (u(t))t≥0, (Pu)u∈E ) ,

with Markov transition kernels (Pt(u, dv))t≥0, with
Ω = D(R+;E ) with Skorohod topology and the natural filtration
Ft = σ (u(s), 0 ≤ s ≤ t) and F = σ (u(s), 0 ≤ s). The law of the
Markov process with initial state u ∈ E is Pu and for an initial
measure ν on B(E ) we denote Pν(·) =

∫
E Puν(du).

We have the empirical (random) measures of Level-3 (or process
level) are given by

Rt :=
1

t

∫ t

0
δθsωds ∈M1(Ω)

where (θω)(s) = ω(t + s) for all t, s ≥ 0 are the shifts on Ω and
M1(Ω) is the space of probability measures defined on Borel sets
B(Ω).
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The level-3 entropy functional of Donsker-Varadhan
H :M1(Ω)→ [0,∞] is defined by

H(Q) =

{
E Q̄hF1(Q̄ω(−∞,0]; Pω(0)) if Q ∈Ms

1(Ω)
+∞ otherwise

where Ms
1(Ω) is the space of those elements in M1(Ω) which are

θs -invariant (stationary).
Q̄ is the unique stationary extension of Q ∈Ms

1(Ω) to
Ω̄ = D(R;E ).
The filtration is extended on Ω̄ with

F s
t = σ(u(r); s ≤ r ≤ t),∀s, t ∈ R

Q̄u(−∞,t] is the regular conditional distribution of Q knowing F−∞t .
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hG(ν, µ) is the relative entropy (Kullback) information of ν with
respect to µ restricted to the σ-field G given by

hG(ν, µ) :=

{ ∫
dν
dµ |G log

(
dν
dµ |G

)
dµ if ν � µ on G

+∞ otherwise

Now the level-2 entropy functional J :M1(E )→ [0,∞] which
governs the LDP in the main result is

J(β) = inf {H(Q)|Q ∈Ms
1(Ω) and Q0 = β} , ∀β ∈M1(E ),

where Q0(·) = Q(u(0) ∈ ·) is the marginal law at t = 0.

76 / 118



History and Motivation: Why Stochastic Navier-Stokes Equations? Hypersonics Hierarchy & Hilbert’s Sixth Problem: From Liouville to Boltzmann to Euler/Navier Stokes Equations Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic Compressible Navier-Stokes Equations Stochastic Incompressible and Compressible Euler Equations Stochastic Compressible Navier-Stokes Equations Various Models from Mechanics and Physics: MHD, General Relativity and Quantum Physics Navier-Stokes Equation and Euler Equations with Gaussian and Levy Noise and Random Initial data Statistical Theory of Turbulence-Rigorous Aspects Ergodicity and Large Deviations Control and Filtering Hormander Condition and Malliavin Calculus: Hypoellipticity, Controllability and Absolute Continuity Bibliography

Optimal Control

Consider control problem of minimizing:

J(t,u,U) := E

[∫ T

t

(
‖A1/2u(r)‖2 +

1

2
‖U(r)‖2

)
dr + ‖u(T )‖2

]
→ inf .

Here ‖A1/2u‖2 = ‖Curl u‖2 the enstrophy. We take the state
equation as:

du(t) + (νAu(t) + B(u(t))) dt = KU(t)dt + dM(t),

where K ∈ L(H ;V ) and the control U(·) : [0,T ]× Ω→ Z will
be taken from the set of control strategies Ut . The control set
Z = BH(0,R) ⊂ H is the ball of radius R in H .
We define the value function as

V(t, v) := inf
U(·)∈Ut

J(t,u,U(·)) for initial data u(t) = v .
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Hamilton-Jacobi-Bellman Equation

Formally the value function satisfies the infinite dimensional
second-order Hamilton-Jacobi(-Bellman) equation:

∂tV +
1

2
Tr(ΦQΦ∗D2V)− (νAv + B(v),DV)

+

∫
Z

[V(v + Ψ(v , z), t)− V(v , t)− (DvV,Ψ(v , z))] dν(z)

+‖A1/2v‖2 +H(K ∗DV) = 0, ∀(t, v) ∈ (0,T )× D(A), (43)

V(T , v) = ‖v‖2, for v ∈ H .

Here H(·) : H → R is given by

H(Y ) := inf
U∈Z

{
(U ,Z ) +

1

2
‖U‖2

}
.
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More explicitly we can write

H(Y ) =

{
−1

2‖Y ‖
2 if for ‖Y ‖ ≤ R

−R‖Y ‖+ 1
2 R2 if for ‖Y ‖ > R

Optimal feedback control is given by

Ũ = Γ(K ∗DvV(t,u(t)), where

Γ(Y ) = DZH(Y ) =

 −Y if for ‖Y ‖ ≤ R

−Y R
‖Y ‖ if for ‖Y ‖ > R

Definition

Test Functions A function ψ is a test function of the above
Hamilton-Jacobi equation if ψ = φ+ δ(t)(1 + ‖A1/2v‖2)m, where

1 φ ∈ C 1,2((0,T )×H), and φ, φt ,Dφ,D
2φ are uniformly

continuous on [ε,T − ε]×H for every ε > 0, and

2 δ ∈ C 1(0,T ) is such that δ > 0 on (0,T ) and m ≥ 1.
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Definition

Viscosity Solution A function V : (0,T )× D(A1/2)→ R that is
weakly sequentially upper-semicontinuous (respectively
lower-semicontinuous) on (0,T )× D(A1/2) is called a viscosity
subsolution (respectively, supersolution) of the above
Hamilton-Jacobi equation if for every test function ψ, whenever
V − ψ has a global maximum respectively, V + ψ has a global
minimum)over (0,T )× D(A1/2) at (t, v) then we have v ∈ D(A)
and

∂tψt +
1

2
Tr(ΦQΦ∗D2ψ)− (νAv + B(v),Dψ)

+

∫
Z

[ψ(v + Ψ(v , z), t)− ψ(v , t)− (Dvψ,Ψ(v , z))] dν(z)

+‖A1/2v‖2 +H(K ∗Dψ) ≥ 0, respectively ≤ 0. (44)
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For two dimensional stochastic Navier-Stokes equation on a
periodic domain (or compact manifold) with TrQ <∞ and
Tr(A1/2QA1/2) <∞ we have

Theorem

The value function is the unique viscosity solution of the
Hamilton-Jacobi equation. It is also locally Lipchitz:

|V(t1, v)− V(t2, z)| ≤ ωr (|t1 − t2|+ ‖v − z‖),

for t1, t2 ∈ [0,T ] and ‖A1/2v‖, ‖A1/2z‖ ≤ r ,

|V(t, v)| ≤ C (1 + ‖A1/2v‖2).

Open Problem
The uniqueness of viscosity solution for 3− D case and the case of
Q = I are open.
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Classical Kalman Filter

We start with the state space model:

d

dt
Xt = FtXt + Wt , t ≥ 0, Signal process,

Zt = HtXt + Vt , measurement process

where Wt and Vt and X0 are uncorrelated, E [X0] = X̄0 and
COV(X0) are given, and

E [WtW
T
s ] = Qtδ(t − s), E [VtV

T
s ] = Rtδ(t − s), E [VtW

T
s ] = 0.

Filtering Problem corresponds to finding the best estimator based
on sensor measurements X̂t = E [Xt |Z (s), 0 ≤ s ≤ t] which is the
same as finding X̂t that mnimizes error variance

E [(Xt − X̂t)(Xt − X̂t)
T ].

82 / 118



History and Motivation: Why Stochastic Navier-Stokes Equations? Hypersonics Hierarchy & Hilbert’s Sixth Problem: From Liouville to Boltzmann to Euler/Navier Stokes Equations Hydrodynamic Fluctuations and Landau-Lifshitz Stochastic Compressible Navier-Stokes Equations Stochastic Incompressible and Compressible Euler Equations Stochastic Compressible Navier-Stokes Equations Various Models from Mechanics and Physics: MHD, General Relativity and Quantum Physics Navier-Stokes Equation and Euler Equations with Gaussian and Levy Noise and Random Initial data Statistical Theory of Turbulence-Rigorous Aspects Ergodicity and Large Deviations Control and Filtering Hormander Condition and Malliavin Calculus: Hypoellipticity, Controllability and Absolute Continuity Bibliography

Kalman Filtering -continuation

The filtering equation is

d

dt
X̂t = FtX̂t + Kt(Zt − HtX̂t),

with gain

Kt := PtH
T
t R−1

t , where Pt satisfies the Riccati equation

d

dt
Pt = FtPt + PtF

T
t + Qt − KtRtK

T
t .

Going from this classical problem to filtering of turbulence involve
Xt ,Wt being infinite dimensional (field that depends on spatial
variable), Ft is a nonlinear differential operator (terms in the
Navier-Stokes equations) and we allow for Ht to be nonlinear as
well.
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Nonlinear Filtering

Consider the partially observed problem:

du + (νAu + B(u))dt = dM t = Φ(u)dW t +

∫
Z

Ψ(u, z)dN(t, z)

(45)

The sensor measurement model for Stochastic Calculus
approach:

dz(t) = h(u(t))dt + dWt , (46)

where Wt is a finite or infinite dimensional Wiener process.
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Nonlinear Filtering: Given back measurements z(t), 0 ≤ s ≤,
how does the least square best estimate which is probabilistically
E [f (u(t))|Σz

t ] where Σz
t is the sigma algebra generated by the

back measurements:

Σz
t = σ {z(s), 0 ≤ s ≤ t} .

A theorem of Getoor provides the existence of a random measure
µzt that is measurable with respect to Σz

t such that

E [f (u(t))|Σz
t ] = µzt [f ] =

∫
H

f (ζ)µzt (dζ).

We require the following condition for the observation vector:

E

[∫ T

0
‖h(u(t))‖2dt <∞

]
. (47)
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The Formal Generator of the Navier-Stokes Markov process

The generator of the Markov process u(t) is defined as:

lim
t→0

E [F (u(t))]− F (u0)

t
:= LF (u0), for F ∈ D(L) and u0 ∈ D(A).

Formally L will look like:

LF (v) :=
1

2
Tr(ΦQΦ∗D2F (v))− (νAv + B(v),DF (v))

+

∫
Z

(F (v + Ψ(v , z))− F (v)− (DvF ,Ψ(v , z))) dν(z), ∀v ∈ D(A).

(48)
Here an example of F ∈ L can be constructed as follows: Let
e i ∈ D(A), i = 1, · · · ,N be a basis and let φ ∈ C∞0 (RN) and set
F (u) = φ(< u, e1 >, · · · , < u, eN >) then we will have F ∈ D(L)
since all terms in the generator are well defined.
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Let us describe the special cases of observation noise W (t) and
the finitely additive Gaussian noise e(t) are independent of the
noise terms in the Navier-Stokes equation W and N(·, ·).
Then µzt (f ) satisfy the Fujisaki-Kallianpur-Kunita equation:

dµzt [f ] = µzt [Lf ]dt + (µzt (hf )− µzt (h)µzt (f )) (dz(t)− µzt (h)dt)

If we set

ϑzt [f ] := µzt [f ] exp

{∫ t

0
µzt [h] · dz(s)− 1

2

∫ t

0
|µzt [h]|2ds

}
,

then using Ito formula we get the Duncan-Mortensen-Zakai
equation:

dϑzt [f ] = ϑzt [Lf ]dt + ϑzt (hf ) · dz(t), for f ∈ EA(H).
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Existence follow from Getoor theorem but the uniqueness currently
can only be proved for 2-D periodic domains, with the covariance
operator satisfying: TrQ <∞ and Tr (A1/2QA1/2) <∞.

Theorem

Let M(H) and P(H) respectively denote the class of positive
Borel measures and Borel probability measures on H . Then there
exists a unique P(H)-valed random probability measure µzt and a
unique M-valued random measure ϑzt , both processes being
adapted to the filtration Σz

t such that both measures satisfying
moments of the type:

sup
0≤t≤T

E

[∫
H
‖v‖2µzt (dv)

]
+ E

[∫ T

0

∫
H
‖A1/2v‖2µzt dt

]
<∞.

Fujisaki-Kallianpur-Kunita equation and the Zakai equation are
respectively satisfied for the class of functions from EA(H).
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White Noise Filtering

The sensor measurement model:

z(t) = h(u(t)) + e(t), (49)

where e(t) is a finite or infinite dimensional white noise and:

E

[∫ T

0
‖h(u(t))‖2dt

]
<∞. (50)

The measures ρzt ∈M(H) and πzt ∈ P(H) satisfy:

< πzt , f >:=

∫
H

f (x)πzt (dz) = E [f (u(t))|z(s), 0 ≤ s ≤ t] , (51)

< πzt , f >=
< ρzt , f >

< ρzt , 1 >
,

< ρzt , f >= E

{
f (u(t)) exp

∫ t

0
Czs (u(s))ds

}
,
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where

Czs (u) = (hs(u), z(s))H −
1

2
‖h(u)‖2

H.

Further the measures ρzt ∈M(H) and πzt ∈ P(H) will be taken
from the class that satisfy the moments:

sup
0≤t≤T

∫
H
‖v‖2µzt (dv) +

∫ T

0

∫
H
‖A1/2v‖2µzt dt <∞. (52)

Given suitable growth conditions on h(·) the energy inequality
above will also imply:∫ T

0

∫
H
‖h(x)‖2dµzt dt <∞.
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Theorem

Let the martingale problem of stochastic Navier-Stokes equation is
well-posed, then for z ∈ C ([0,T ];H) and ρzt ∈M(H) is the
unique solution of the measure valued evolution

< ρzt , f >=< ρ0, f > +

∫ t

0
< ρzs ,Lf + Czs f > ds, f ∈ EA(H),

(53)
and the probability measure valued process πzt ∈ P(H) satisfy

< πzt , f >=< π0, f >

+

∫ t

0
[< πzs ,Lf + Czs f > − < πzs , Czs >< πzs , f >] ds, (54)

for f ∈ EA(H) and 0 ≤ t ≤ T .
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Optimal Stopping Problems

Consider the optimal stopping problem of characterizing the value
function

V(t, v) := inf
τ

E

[∫ τ

t
‖A1/2u(s)‖2ds + k(u(τ))‖u(τ)‖2

]
,

with state equation

du(t) + (νAu(t) + B(u(t)))dt = dW ,

u(0) = u0 ∈ H .
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Value function solves formally the infinite dimensional
variational inequality (V.I):

∂tV−
1

2
Tr(QD2V)+(νAv+B(v),DV) ≤ ‖A1/2v‖2, for t > 0, v ∈ D(A),

V(t, v) ≤ k(v)‖v‖2, for t > 0, v ∈ H ,

V(0, v) = φ0(v), v ∈ H .

In the continuation set{
(t, v) ∈ R+ ×H ;V(t, v) < k(v)‖v‖2

}
,

we have the equality:

∂tV−
1

2
Tr(QD2V)+(νAv+B(v),DV) = ‖A1/2v‖2, for t > 0, v ∈ D(A).
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V.I is recast as a nonlinear evolution problem with multi-valued
nonlinearity:

∂tW −NW + NK (W) 3 ‖A1/2u‖2, t ∈ [0,T ],

W(0, v) = φ0(v).

Here N is the extension of the generator L) generator and NK is
the normal cone to the closed convex subset K ⊂ L2(H , µ),

K =
{
φ ∈ L2(H , µ);φ(·) ≤ k(·)‖ · ‖2 on H

}
,

where µ is an invariant measure for the transition semigroup
P(t) : Cb(H)→ Cb(H):

(P(t)ψ)(v) = E [ψ(u(t, v))], v ∈ H ,∀t ≥ 0, ψ ∈ Cb(H),

where u(t, v) is the strong solution with initial data v . Normal
cone: φ ∈ K ,

NK (φ) =

{
η ∈ L2(H , µ);

∫
H
η(v)(ψ(v)− φ(v))µ(dv) ≤ 0,∀ψ ∈ K

}
.
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Existence of invariant measure µ and its uniqueness for 3-D
stochastic Navier-Stokes with Levy noise was proven the speaker
and co-authors:∫

H
(P(t)ψ)(v)µ(dv) =

∫
H
ψ(v)µ(dv), ψ ∈ Cb(H).

Then P(t) has an extension to a C0-contraction semigroup on
L2(H ,u). We will denote N : D(N ) ⊂ L2(H , µ)→ L2(H , µ) the
infinitesimal generator of P(t) and let N0 ⊂ N be defined by

(N0ψ)(v) =
1

2
Tr(QD2ψ(v))−(νAv+B(v),Dψ(v)), ∀ψ ∈ EA(H),

where EA(H) is the linear span of all functions of the form
φ(·) = exp(i < h, · >),h ∈ D(A). It can be shown that if

ν ≥ C (‖Q‖L(H;H) + Tr Q) is sufficiently large

and if Tr[AδQ] <∞ for δ > 2/3 then N0 is dissipative in
L2(H , µ) and its closure N̄0 in L2(H , µ) coincides with N .
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We note that for 2-D periodic Navier-Stokes the large viscosity
condition is not needed. Moreover, from the definition of the
invariant measure, taking ψ(v) = ‖v‖2 we have∫

H
(Nψ)(v)µ(dv) = 0,

which implies the integrability of enstrophy ‖ curl v‖2 = ‖A1/2v‖2

with respect to the invariant measure µ:

2ν

∫
H
‖A1/2v‖2µ(dv) = TrQ <∞.

(slightly simplified) Solvability theorem for the variational
inequality (or the nonlinear evolution problem)
The proof is based on nonlinear semigroup theory for the
m-accretive operator A = −N + NK in L2(H , µ).
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Theorem

Suppose k(v) be such that G (v) = k(v)‖v‖2 satisfies G ∈ C 2(H)
and

(N0G )(v) ≤ 0, ∀v ∈ D(A). (55)

Then for each φ0 ∈ D(N ) ∩K there exists a unique function
φ ∈W 1,∞([0,T ]; L2(H , µ)) such that NφL∞(0,T ; L2(H , µ)) and

d

dt
φ(t)−Nφ(t) + η(t)− ‖A1/2v‖2 = 0, a.e.t ∈ (0,T ),

η(t) ∈ NK (φ(t)), a.e.t ∈ (0,T ),

φ(0) = φ0.

Moreover φ : [0,T ]→ L2(H , µ) is differentiable from right and

d+

dt
φ(t)−Nφ(t)−‖A1/2v‖2 +PNK (φ(t))

(
‖A1/2v‖2 +Nφ(t)

)
= 0,

∀t ∈ [0,T ], where PNK (φ) is the projection on the cone NK (φ).
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Impulse Control

du(t) + (νAu(t) + B(u(t)))dt =
∑
i≥1

U iδ(t − τi )dt + dW ,

u(0) = u0 ∈ H .

Control consists of random stopping times τi and impulses of
random strength U i ,

U := {(τ1,U1); (τ1,U1); · · · } .

The goal is to find an optimal control such that the following cost
functional is minimized,

J(u,U) := E

{∫ ∞
0

e−α(t)F (u(t))dt +
∑
i

e−βτi L(U i )

}
→ inf .
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We will get quasi-variational inequalities of the form for the value
function V:

NV(v) ≤ F (v), V(v) ≤ M(V)(v),

and

NV(v) = F (v), in the set {v ∈ H ;V(v) < MV(v)}

M(V)(v) = inf
U
{L(U) + V(v + U)} .

Also note that an iterative method of the type:

NVn+1(v) ≤ F (v), Vn+1(v) ≤ M(Vn)(v),

NVn+1(v) = F (v), in the set {v ∈ H ;V(v) < M(Vn)(v)}

M(Vn)(v) = inf
U
{L(U) + Vn(v + U)} ,

will give us a series of optimal stopping time problems for
n = 1, 2, · · · . However the smoothness of the obstacle functions
M(Vn) is an issue in this situation.
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Hormander Condition

A linear differential operator P with C∞ coefficients in an open set
Ω ⊂ Rn (or a manifold) is called hypoelliptic if for every
distribution u in Ω we have

sing supp u = sing supp Pu,

that is, u must be a C∞ function in every open set where Pu is a
C∞ function.

Definition

(Hormander condition) Let X0,X1, · · · ,Xk be vectorfields on Rn.
They are said to satisfy Hormander condition if at each point
x ∈ Rn if the Lie algebra generated by X0,X1, · · · ,Xk span Rn.
This means that among operators
Xj1 , [Xj1 ,Xj2 ], [Xj1 , [Xj2 ,Xj3 ]], · · · , [Xj1 , [Xj2 , [Xj3 , · · · ,Xjk ]]], ....
where ji = 0, 1, ..., r there exists n which are linearly independent.
Here [X ,Y ](x) = DX (x)Y (x)− X (x)DY (x).
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Hormander Condition Implies Hypoellipticity

Theorem

(Hormander Hypoellipticity Theorem (1967)) Let Xi be vectorfields
given by differential operators

Xi =
n∑

j=1

Xij(x)
∂

∂xj
, i = 0, · · · , k ,

satisfy the Hormander condition and also the matrices
X (x) := {Xij} are such that XXT (x) invertible everywhere. Then
the partial differential operator

P =
k∑

i=1

X 2
i + X0 + C is hypoelliptic.
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Hormander Condition Implies Absolute Continuity

Theorem

Consider the stochastic differential equation in the Stratonovich
form

dx = X0(x)dt +
k∑

i=0

Xi (x) ◦ dWi (t),

where Wi (t) are standard Brownian motions. Let the vectorfields
Xi (x) be smooth and bounded and satisfy the Hormander
condition. Then the solution of the stochastic differential equation
admits a smooth density with respect to Lebesgue measure.
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Hormander Condition Implies Local Controllability

Theorem

(Chow -Rashevskii (1938)) Let M be a smooth differentiable
manifold and X0,X1, · · · ,Xk be vectorfields on M. Let these
vectorfields satisfy the Hormander condition. Then the control
system

dx

dt
= X0(x) +

k∑
i=1

uiXi (x)

is locally controllable for any time.

For a linear system x ∈ Rn with controls u ∈ Rm:

dx

dt
= Ax + Bu where A ∈ Rn × Rn and B ∈ Rn × Rm,

the Hormander condition above reduces to the Kalman Rank
Condition that rank of the n × nm - Kalman block matrix

(A,AB, · · · ,An−1B) must be of dimension n of the state space.
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Malliavin Calculus

Definition

(Gaussian Process) Given a separable Hilbert space H with a scalar
product given by < ·, · >H , we say a stochastic process
W = {W (h), h ∈ H} defined in a complete probability space
(Ω,F ,P) is an isonormal Gaussian process if W is a centered
Gaussian family of random variables such that:

E [W (h)W (g)] =< h, g >H for any h, g ∈ H.

Let C∞p (Rm) be the set of all infinitely continuously differentiable
functions Rm → R such that f and all its derivatives have
polynomial growth. Let S be the class of smooth random variables
such that a random variable F ∈ S has the form:

F = f (W (h1), · · · ,W (hn)) where f ∈ C∞p , h1, · · · , hn ∈ H.
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Definition

(Malliavin Derivative) The Malliavin derivative of a smooth
random variable F of the above form is the H-valued random
variable given by

DF =
n∑

i=1

∂i f (W (h1), · · · ,W (hn))hi .

For example consider the stochastic Navier-Stokes equation:

du + (νAu + B(u))dt = σdW .

Let u = Φ(W [0, t]) so that we take the Malliavin derivative

Du = ζ = lim
ε→0

d

dε
Φ(W [0, t] + ε

∫ t

0
h(r)dr), where

dζ

dt
+νAζ+B ′(u)ζ = σh, similarly for higher order Malliavin derivatives.

Solvability and estimates of these equations are well-known (Vishik
and Fursikov 1988) and (Sritharan 1994, 1998). 105 / 118
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For any p ≥ 1 denote the domain of the Malliavin derivative D in
Lp(Ω) by D1,p as the closure of the class of smooth random
variables S with respect to the norm

‖F‖1,p =
(
E [|F |p] + E [‖DF‖pH ]

)1/p
.

Theorem

(Malliavin) Let F = (F 1, · · · ,Fm) be a random vector satisfying
the following conditions:

1 F i belongs to the space D1,2 for all i = 1, · · · ,m.

2 The matrix γF = (< DF i ,DF j >)1≤i ,j≤m is invertible a.s.

Then the law of F is absolutely continuous with respect to the
Lebesgue measure on Rm.

Fluid models: 2-D stochastic Navier-Stokes equations with periodic
boundary conditions, absolute continuity of the finite dimensional
projections of the law of vorticity with respect to Lebesgue measure
has been shown (in 2004) by J. Mattingly, E. Pardoux and M.
Hairer. Sritharan and Meng Xu (2013) for point vortex models. 106 / 118
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General Relativity: Einstein-Lovelock Theorem

We start with the Riemann-Christoffel curvature tensor defined by:

∇ν∇µX γ −∇µ∇νX γ = Rγ
νµβX β,

and the Ricci tensor Rµν = Rβ
νµβ , the scalar Ricci tensor

R = gνµRµν and the Einstein tensor Gµν = Rµν − 1
2 gµνR.

Theorem (A. Einstein 1905, E. Cartan 1922, H. Weyl 1922, David
Lovelock 1976)

In four dimensions the only second order tensor that is divergence
free, depends only on the metric tensor gµν and its first and second
derivatives, is the Einstein tensor Gµν .

Take gµν to be a metric for a Lorenzian manifold with signature
(−1, 1, 1, 1). Then, Einstein Field equations of General Relativity
(a quasilinear second order hyperbolic PDE for gµν):

Gµν =
8πG

c4
Tµν , where Tµν is the energy momentum tensor.
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Stochastic General Relativity

The Stochastic Einstein Field Equation

Gµν + gµνΛ =
8πG

c4
Tµν + Γµν , (56)

Gµν = Rµν −
1

2
Rgµν is the Einstein tensor,

where Rµν is the Ricci curvature, R is the scalar curvature, gµν
metric tensor, Λ is the cosmological constant, G is Newton’s
gravitational constant, c is the speed of light, and Tµν is the
energy-momentum stress tensor. Γµν is a stochastic force tensor.
The Bianchi identity divνGµν = 0 and the property of the metric
tensor: divνgµν = 0 leads to relativistic stochastic system:
Stochastic Einstein Field Equations coupled with Relativistic
Stochastic Navier-Stokes Equations:

divνTµν = − c4

8πG
divνΓµν .
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Maxwell-Dirac Equations can be a good model for Free
Electron Lasers
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Quantum Electrodynamics: Maxwell-Dirac Equations

The Maxwell-Dirac equations with stochastic force

Let vµ are components of the electromagnetic vectorfield, and ψ is
the Dirac spinor field from space time to the spin field of four
dimensional complex vector space.The positive definite inner
product in the spin space is denoted by ψ†ψ and ψ̄ denotes ψ†γµ.

Stochastic Dirac (−iγµ∂µ + m)ψ = gvµγµψ + Γ1,

Stochastic Maxwell �vµ = (∆− ∂2
0)vµ = gψ̄γµψ + Γ2,

∂µvµ = 0.

Here γ are linear operators in spin space that satisfy
γµγν + γνγµ = 2gµν , g00 = 1, g11 = −1, gµν = 0 for ν 6= µ and
γ0∗ = γ0,γ1∗ = −γ1.
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