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Random Interface Models

Figure: Natural interfaces (rivers Rhone and Arves in Geneva)



» A d-dimensional interface is the graph of a function
©:729 - R.
> o, := p(x) is the height of the interface at the site x € 7.9,




A random interface ¢ = (x),czd is determined by

» Hamiltonian .
H :RZ — [0, 00),

» Probability measure



A random interface ¢ = (x),czd is determined by

>
H:RZ [0, 00),

1
Pa(dg) = 5" T dox [] dolex)
n xe A x€Z4\A

A= Vy €Z? the hypercubic box of side length N.



A random interface ¢ = (x)cyd is determined by
» Hamiltonian

H: R - [0, 00),
» Probability measure

Pa(dy) = 1

—e

H(y) I I d
Z Px
Almost surely

xEN

DA™ /g1



Typical questions

Is Pp well-defined?

Does P :=limy,z4 Pa (infinite volume) exist?

>
>
» s the interface typically flat or fluctuating? And how much?
» How big are its extremes?

>

Does it have a scaling limit?



Discrete Gaussian free field

A mountain landscape




DGFF

Sayx~y <= {x,y}=ec E(Z% (x and y are
nearest-neighbors).
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DGFF

Sayx~y <= {x,y}=ec E(Z% (x and y are
nearest-neighbors).

Definition
The DGFF is the interface on Ay @ 74 with 0-b. c. and
Hamiltonian

H(P) = 30 3 (ox — )

X~y

In d = 1: DGFF = Gaussian random walk bridge.



Discrete Gaussian free field arises out of discrete Dirichlet energy:
Favours flat configurations

HO) = 1 Do — o)

X~y



Discrete Gaussian free field arises out of discrete Dirichlet energy:
Favours flat configurations

HO) = 1 Do — o)

X~y

Alternative form:

Hp) = > ox(—Agpy)

xezd

where )
ASOX = ﬂ Z(Spy - QOX)'

y~x



Green’s function

Under conditions of positive definiteness
» o, =0, forall x € z4 \A, Pp-a. s.
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Green’s function

Under conditions of positive definiteness
» o, =0, forall x € z4 \A, Pp-a. s.

> (SOX)XE/\ ~ N(O, G/\) with

E/\[QOXQD}/] = G/\(Xa.y)7 Xay € /\

» Forall x € A

AGA(x,y) =0x(y), y €N
G/\(Xay) = 07 y §é A.



RW representations

DGFF
If Py is the law of a SRW (S,)n>0 started at x € 79, then

Ga(x, y) = Ex {Z H(Sny,n<77\)]

n>0

where Tp == inf{n>0:5, ¢ A}.
Note that

G(x,y) = Gga(x,y) = Ex !Z ]lsny] < oo ford > 3.

n>0



The discrete membrane (bilaplacian) model
Second example: membrane model

He) =5 3 186, =

xezd

N =

(9, 0%9).




Membrane Model contd.
Note that A?f(x) = A(Af)(x) and

A/Z\(Xa)/) = (A2(X,Y))X,ye/\
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Membrane Model contd.
Note that A?f(x) = A(Af)(x) and
A/z\(xa)/) = (A2(X,Y))X,y6/\

and note
AL # (—Ap)°

(¢, 8%p) = (Dp, Dp) > 0
for all ¢ # 0 on A\ and zero on N\€

— Af\ is positive definite and symmetric.

Ga(x,y) = (83) 7" exists.



In other words:
> o, =0, for all x € Z9\\, Pp-a. s.
> (px)xen ~ N(0, Gp) with

Ealoxey] = Galx,y), x,y €.



In other words:
> o, =0, for all x € Z9\\, Pp-a. s.
> (px)xen ~ N(0, Gp) with

EA[('DXQDY] = G/\(X7Y)7

No easy Random Walk Representation
For x € Vy,

{ AzG/\(x’y) = 6(X7 }/),
G/\(va) = 0,

x,y € A\

yeN
yec‘)z/\.



Mountain topographic maps

Contour lines of a 3d MM and a 3d DGFF on a 50 x 50 x 50 box.

40 T

The MM fluctuates more in d = 3 (subcritical) comparéd to the
DGFF (supercritical).



Infinite volume measure

The infinite volume measure

P:= lim Py
INV/d
if it exists.
» DGFF: d > 3;
> MM:d > 5.



Infinite volume covariance d > 5
> (A2)7! as A1 Z9 exists
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Infinite volume covariance d > 5
> (A2)7! as A1 Z9 exists

lim (A2)71 = lim (Ap) 72
Az Az

G(x,y) = Z G(x,2)G(z,y).

zezd



Infinite volume covariance d > 5
> (A2)7! as A1 Z9 exists

lim (AZ2)71 = lim (Ap) 72
Az AZ9

X, y) = Z G(x,2)G(z,y).
zezd
» Ind > 5, consider (Xn)n>0 and (Ym)m>o, two independent
random walks on 79 and

=2 F [Z len—z] E? Lé 1Ym:y]

zezd
oo
X7
=B Z ]l{XnZYm}
n,m=0

[e.9]

Z Py [Xn = y].



Results through PDE technique
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Interface models: Semi-flexible polymers

Given A = [—N, N9 NZ9, we consider (px),cz¢ with the
following properties:

> o, =0, for all x € Z9\A

> (SOX)XEA ~ N(O, G/\) with

E/\[QOXSDy] = G/\(va), Xa.y € A

> Let
Ly = (ﬁl(—A) + /izAz) .

For all x € A

(k1(—A) + HQAZ) Ga(x,y) =0x(y), y €N
G/\(X7y) =0, y ¢ A.



Special cases

» ky = 0: DGFF, purely gradient interaction.
» r1 = 0: Membrane model (MM), purely Laplacian interaction.

» k1 and Kk may or may not depend on size on .



Scaling limit
Consider the domain Dy = D N §Z% and (¢x)xen, be an interface

model.
7~ ™
\
/
\\
\\ /
N 1/
4
— -




Scaling limit

Question: As Dy — D

The DGFF as the mesh size goes to 0 (courtesy: Nam-Gyu Kang).



Main results: Phase transition picture
Let k1 =1 and k> = kN and
L/\ =-A+ KNAZ.

Theorem (Cipriani, Dan, H (2020))

> When ky < N2, the limit is the Gaussian free field (scaling
2—d
N7z").

» When Ky > N2, the limit is the Membrane model (scaling

N'Z /i),

» When ky ~ N?, the limit is a field arising out of both
2—d
gradient and Laplacian interaction (scaling N 2" ).



Scaling limit in d=1

In all three cases (DGFF+MM+ Mixed) the limit turns out to have
continuous paths. Let Ay = [1, N — 1] N Z. Consider the linear
interpolation of the interface model.

For0<t<1,

Pn(t) = ey + (Nt — [Nt]) (0 nej+1 — 2 neg) -



Scaling limit in d=1

In all three cases (DGFF+MM+ Mixed) the limit turns out to have
continuous paths. Let Ay = [1, N — 1] N Z. Consider the linear
interpolation of the interface model.

For0 <t<1,

@n(t) = pine) + (NE— [NE]) (0 nej+1 — 2 neg) -
For DGFF & Mixed model (k1 =1, kp = 1)

Theorem (d=1, Cipriani, Dan, H. (2018))
In C[0,1],

(N_1/285N(t))te[o,1] = (B{)tef0,1]

where (By):ejo,1] is the Brownian Bridge.
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Scaling limit in d=1: Membrane
Let X; "7 N(0,1).

Yo = X1+ -+ X, (Random walk)

Z, = Y1+ -+ Yy = nXy+(n—1)Xo+- - -+ X, (Integrated random walk)

d »
{eiti<i<n = (Zi)1<i<n conditionally on (Y, Zn) = (0,0).

Let (Bt)sejo,1) be the standard Brownian motion and Iy = fot Bsds.

(Et»Tt)te[o,l] = {(Bt, /t)te[o,l] Conditioned on (Bi, h) = (0,0)}.



Scaling limit in d=1: Membrane (contd.)

For0<t<l1,
n(t) = o ey + (NE— [Nt]) (@ nej+1 — @ e ) -

Theorem (Caravenna and Deuschel (2009))
On CJ0,1],

o~

(N_3/2@N(t))te[0,1] = (It)eefo,1]-



Scaling limit in d = 2,3: Membrane

Membrane Model is still in subcritical regime.

In these cases it turns out the limiting process has still continuous
paths.

Let Ay = (—N,N)nzZe.

_ 1
Wn(t) = NT ope t € de.

Interpolate continuously on [—1,1]¢.



Theorem (Cipriani, Dan, H. (2018))
Suppose d =2 or 3. In C([—1,1]9)

WN:>W

where W = (W¢),c[_11}¢ is @ Gaussian process with continuous
paths and

E[V:V,] = Gp(t,s)

and Gp is the Green's function on D = [—1,1]9 satisfying the
following Dirichlet problem:

AEGD(X7}/) = 5x(y)7 S D
GD(X7y):O7 y€8D
DGD(X7y):O7 yeaD



Consequences

» A consequence of the proof is that the process V is almost
surely Hélder continuous with exponent 1, for every n € (0, 1)
resp. n € (0,1/2) ind =2 resp. d = 3.

» One can get the extremes in d = 2,3,

N% max goxg sup W,
x€(—N,N)? x€[-1,1]

» The extremes of Membrane in 79 for d > 5 was resolved in
Chiarini, Cipriani, Hazra (2017). Scaling limit for extremes in
d = 4 was derived by Schweiger (2019).

» OPEN: point process behaviour of extremes of membrane in
d = 4 should correspond to “log-correlated” models.
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Finite dimensional convergence follows from Green's function
convergence.
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Brief idea of the proof

Finite dimensional convergence follows from Green's function
convergence.

Checking Kolmogorov criteria for tightness :
E [[Wn(t) = Wn(s)]?] < Clle —s|**?

If t and s are neighbours then we use some gradient bounds by
Miiller and Schweiger (2017).
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Brief idea of the proof

E[[Wn(t) — Wn(t+e)l]
= GN(t, t) + GN(t + e, t+ 6‘1) — 2GN(I', t+ e1)
= v£e1 GN(t + e1, t) - v£e1 GN(l’ + e, t+ 61)

Clog N ifd=2
2 1 g
=V, Vi Gn(t+ert) g{ c Fd—3



Construction of the limit in higher dimension

Let —A. be the Laplacian and A2 be the bilaplacian.
m=1or2

There exist eigenfunctions uy, ua, ... of (—Ac)™ with
corresponding eigenvalues 0 < A1 < Ap < ... — 00 such that

Define X,
=S F4 X Ewo,1).

j>1 \//TJ



Let f € C°(D), define
17112 = S7 X (F, e
j>1

ws — =)



Let f € C°(D), define
17112 = S7 X (F, e

j>1
s — =)

Theorem
Form=1,2 and s >

d—2m m : :
5 V7 exists in

Hys = Hp(D)".



Main results

Theorem (Cipriani, Dan, H. (2020))
Let vy > N?. Let d > 4. Define Wy by

(Wn, £) = (2d) /mnN =2 Y onef(x),  f e H3(D).

XE%AN
Wy = V% on H,%(D) for all s > sy for some sp > 0.

\II2D is the Membrane field, arising out of Ag.



Main results

Theorem (Cipriani, Dan, H. (2020))
Let vy > N?. Let d > 4. Define Wy by

(Wn, £) = (2d) /mnN =2 Y onef(x),  f e H3(D).

XE%AN
Wy = V% on H,%(D) for all s > sy for some sp > 0.

\U2D is the Membrane field, arising out of Ag. Similar results for
other cases can be derived!
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L4 = (r1(—A) + koA?) [ Cipriani, Dan, H.]

K1

K2

scaling(c)

H™®, s> sy

Limit

dim

d+2
h™ 2

NIlw

GFF

d>?2
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Lg = (ri1(—A) + kA?) [ Cipriani, Dan, H.]

K1 | K2 scajilzg(a) H™°, s> 54 | Limit dim

Lo E |3 GFF d>2
0 |1 % MM MM d>4
L R ETIEE RN PR
e L e MM d>2
1 [ <N | h~% | 44 +3 | GFF d>2
e NP g (A+A%) | d=>2
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|dea of proof (Membrane Case)

» First we prove: (W, f) = (Vp,f) forall f € C°(D)
> Apf(x) = 5 S0 (F(x + hej) + f(x — hej) — 2f(x))

> Forall x € Ry := & An

5 44>
AhGh(X’Y) = F(Sx(}/), VAS Ry

Gh(x,y) =0 y & Ry



|dea of proof

var((Wp, f)

(Wh, f) =

xXERp

=) h D KGxy)f(y

XERh ER;,

d+4
Z h%gox/hf(x)

Hy(x)

> ¥ Hp(x)f(x)

xXERp
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» Discrete Dirichlet problem:

A2Hp(x) = f(x), x € Ry
Hp(x) =0, x & Rp.

» Continuum Dirichlet problem

AZu(x) = f(x), x€ D

c

u=20,
g;:0on8D.

» Difference between continuum and discrete Dirichlet problem
solutions: ep(x) := u(x) — Hp(x) for x € Dy,
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|dea of proof

» Using an extension of result by V.Thomée(1964)

1
lenll2(r,) < Ch2.

var((Wp, f)) —>h_>0/Du(x)f(x)dx

u(x) = /D Go(x. y)F(y)dy.



|dea of proof

» Using an extension of result by V.Thomée(1964)

1
lenll2(r,) < Ch2.

>
var((Wp, f)) —>h_>o/Du(x)f(x)dx
| 4
o) = [ Golx ().
>

var[(wD,f)]:/D/DGD(x,y)f(x)f(y)-



lenlli2(r,) < Ch'/?

» The operator A% is consistent with the operator A%:
u e C>(W) then

A2u(x) = A2u(x) + hm*Rs(x)

where |Rs(x)| < CMsh®.



lenlli2(r,) < Ch'/?

» The operator A% is consistent with the operator A%:
u e C>(W) then

A2u(x) = A2u(x) + hm*Rs(x)
where |Rs(x)| < CMsh®.
» There are constants C > 0 independent of f and h such that

1/2

IFlli2(ryy < CllFlla2:={ > 1D £ 72(r,)
|Bl1<2

for any grid function f vanishing outside Rj,.



Splitting of domain to define the Truncated operator




Truncated operator

A%f(x)  x€ER:
Aizf(x) = WA (x) x€ B
0 X Qé Rh.



Truncated operator

A%f(x)  x€ER:
AGof(x) =< RA(x) x€ B
0 X ¢ Rh.

There exists a constant C > 0 such that for all grid functions f
vanishing outside Ry,

[flln,2 < CllAn2fll2(r,),

where C is independent of h as well.



A story of bilaplacian!



Ernst Chladni

In 1787, musician and physicist Ernst Florence Friedrich Chladni
made an interesting experiment.

o |




Chladni experiment

He noticed that when he tried to excite a metal plate with the bow
of his violin, he could make sounds of different pitch, depending on
where he touched the plate with the bow. The plate itself was
fixed only in the center, and when there was some dust or sand on
the plate, for each pitch a beautiful pattern appeared.



Chladni plate figures

DA™ 16/51



Sophie Germain

Sophie Germain's entry was the only one. While it contained
mathematical flaws and was rejected, her approach was correct. The
mathematical methodologies appropriate to the molecular view could not
cope with the problem. But Germain was not so encumbered.

Various mathematicians helped her to pursue a new application, and she
won the prize on her third attempt, in 1816. The prize gained her some
attention. But her gender kept her “always on the outside, like a
foreigner, at a distance from the professional scientific culture.”



Chladni’s figures are the zero set of g, i.e. that set of points that
remain stationary under vibrations.



g o*g otg

2 1
ox* * Ox20y? + oy*

A’g = = )\g.

Eigenfrequency=3814.9 Hz

1
Image courtesy: https://www.comsol.com/blogs/how-do-chladni-plates-make-it-possible-to-visualize-sound /



More accurate mathematical explanation

Figure: Walther Ritz (1909)

Figure: Kirchhoff (1850)



THANK YOU!
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