An improved characterization theorem its interpretation in terms of Malliavin calculus and applications to SPDEs

Martin Grothaus

joint with Jan Müller and Andreas Nonnenmacher

Department of Mathematics University of Kaiserslautern Germany

June 25, 2021

Outline

1 Test and regular generalized functions of white noise

2 Characterization in terms of the Bargmann–Segal space

3 Applications to SPDEs

Test and regular generalized functions of white noise

white noise space

Gel'fand triple:

$$\mathcal{S} \subset L^2(\mathbb{R}; dx) \subset \mathcal{S}'$$

smooth functions of rapid decay:

$$\mathcal{S} = \left\{ f \in C^{\infty}(\mathbb{R}) \, \big| \, \sup_{x \in \mathbb{R}} |x^k D^n f| < \infty \text{ for all } k, n \in \mathbb{N}_0 \right\}$$

tempered distributions:

$$\mathcal{S}' = \left\{ \omega : \mathcal{S} \to \mathbb{R} \, \middle| \, \text{linear and continuous} \right\}$$

dual paring:

$$egin{aligned} \mathcal{S}
i f \mapsto &\langle f, \omega
angle := \omega(f) \in \mathbb{R}, \quad \omega \in \mathcal{S}' \ &\langle f, \omega
angle = \int_{\mathbb{R}} f(t) \, \omega(t) \, dt, \quad \omega \in L^2(\mathbb{R}; dx) \end{aligned}$$

white noise space

white noise measure:

$$\int_{\mathcal{S}'} \exp\left(i\langle f,\omega\rangle\right) d\mu(\omega) = \exp\left(-\frac{1}{2}\int_{\mathbb{R}} f^2 dx\right), \quad f \in \mathcal{S},$$

existence by the Bochner-Minlos theorem

white noise space:

$$L^2(\mu):=L^2(\mathcal{S}';\mathbb{C};\mu)$$

Brownian motion

monomials:

$$\omega \mapsto \langle f, \omega \rangle^m \in L^2(\mu) \quad \text{for all } f \in \mathcal{S}, \ m \in \mathbb{N}_0$$
$$E_{\mu}(\langle f, \cdot \rangle) = 0, \quad E_{\mu}(\langle f, \cdot \rangle \langle g, \cdot \rangle) = \int_{\mathbb{R}} f g \, dx \quad \text{for all } f, g \in L^2(\mathbb{R}; dx)$$

representation of Brownian motion:

$$B_t(\omega) = \langle \mathbf{1}_{[0,t)}, \omega \rangle, \quad \omega \in \mathcal{S}'$$

= $\int_0^t \omega(x) \, dx, \quad \omega \in L^2(\mathbb{R}; dx)$
 $E_\mu(B_s B_t) = \int_{\mathbb{R}} \mathbf{1}_{[0,s]} \mathbf{1}_{[0,t]} \, dx = \min\{s,t\}, \quad s, t \ge 0$

MATHEMATIK

Test and regular generalized functions of white noise

chaos decomposition of $F \in L^2(\mu)$:

$$\begin{split} F &= \sum_{n=0}^{\infty} \left\langle F^{(n)}, :\cdot^{\otimes n} : \right\rangle = \sum_{n=0}^{\infty} \int \cdots \int F^{(n)}(t_1, \dots, t_n) \, dB_{t_1} \dots dB_{t_n}, \\ & \text{(in the sense of a multiple Wiener integral)} \\ & \|F\|_{L^2(\mu)}^2 = \sum_{n=0}^{\infty} n! \, |F^{(n)}|^2 < \infty, \quad F^{(n)} \in L^2(\widehat{\mathbb{R}^n; dx})_{\mathbb{C}} \end{split}$$

test and regular generalized functions in terms of the chaos decomposition:

$$\mathcal{G}_{s} := \left\{ \Phi = \sum_{n=0}^{\infty} \left\langle \Phi^{(n)} : \cdot^{\otimes n} : \right\rangle : \\ \Phi^{(n)} \in L^{2}(\widehat{\mathbb{R}^{n}; dx})_{\mathbb{C}}, \sum_{n=0}^{\infty} 2^{ns} n! |\Phi^{(n)}|^{2} < \infty \right\}, \quad s \in \mathbb{R}$$

test and regular generalized functions in terms of the chaos decomposition:

$$\mathcal{G}_{s} := \left\{ \Phi = \sum_{n=0}^{\infty} \left\langle \Phi^{(n)} : \cdot^{\otimes n} : \right\rangle : \\ \Phi^{(n)} \in L^{2}(\widehat{\mathbb{R}^{n}; dx})_{\mathbb{C}}, \sum_{n=0}^{\infty} 2^{ns} n! |\Phi^{(n)}|^{2} < \infty \right\}, \quad s \in \mathbb{R}$$

projective limit and inductive limit:

$${\mathcal G}:=igcap_{q\in \mathbb{N}}{\mathcal G}_q, \quad {\mathcal G}':=igcup_{q\in \mathbb{N}}{\mathcal G}_{-q}$$

chain of spaces:

$$\mathcal{G} \subset \mathcal{G}_r \subset \mathcal{G}_s \subset L^2(\mu) \subset \mathcal{G}_{-s} \subset \mathcal{G}_{-r} \subset \mathcal{G}', \quad r > s > 0$$

Potthoff-Timpel triple:

$$\mathcal{G} \subset L^2(\mu) \subset \mathcal{G}'$$

MATHEMATIK

Potthoff–Timpel and Hida triple:

$$(\mathcal{S})\subset \mathcal{G}\subset L^2(\mu)\subset \mathcal{G}'\subset (\mathcal{S})'$$

examples:

$$\mathcal{G} \ni B_t \notin (S)$$

Brownian motion B_t at t > 0

(non-)elements of \mathcal{G}' :

$$\delta(B_t - a) \in \mathcal{G}', \quad (S)' \ni \omega(t) := \langle \delta_t, \omega \rangle \notin \mathcal{G}'$$

Donsker's delta at $a \in \mathbb{R}$, white noise

Characterization in terms of the Bargmann–Segal space

Bargmann–Segal space

Gaussian measure on $\mathcal{S}'_{\mathbb{C}}$:

$$\int_{\mathcal{S}'_{\mathbb{C}}} \exp\left(i \,\mathfrak{Re}\langle h, \overline{u} \rangle\right) \, d\nu(u) = \exp\left(-\frac{1}{4}\langle h, \overline{h} \rangle\right), \quad h \in \mathcal{S}_{\mathbb{C}}$$

orthogonality of monomials:

$$\begin{split} \left(\langle F^{(n)}, \cdot^{\otimes n} \rangle, \langle G^{(m)}, \cdot^{\otimes m} \rangle \right)_{L^{2}(\nu)} \\ &= \int_{\mathcal{S}_{\mathbb{C}}^{\prime}} \langle F^{(n)}, u^{\otimes n} \rangle \overline{\langle G^{(m)}, u^{\otimes m} \rangle} \, d\nu(u) = n! \, \langle F^{(n)}, \overline{G^{(n)}} \rangle \, \delta_{nm}, \end{split}$$

where $F^{(n)} \in L^2(\widehat{\mathbb{R}^n; dx})_{\mathbb{C}}$, $G^{(m)} \in L^2(\widehat{\mathbb{R}^m; dx})_{\mathbb{C}}$, $n, m \in \mathbb{N}$, respectively

Bargmann–Segal space

Gaussian measure on $\mathcal{S}_{\mathbb{C}}'$:

$$\int_{\mathcal{S}'_{\mathbb{C}}} \exp\left(i \,\mathfrak{Re}\langle h, \overline{u} \rangle\right) \, d\nu(u) = \exp\left(-\frac{1}{4}\langle h, \overline{h} \rangle\right), \quad h \in \mathcal{S}_{\mathbb{C}}$$

Bargmann–Segal space:

$$E^{2}(\nu) := \left\{ H = \sum_{n=0}^{\infty} \langle H^{(n)}, \cdot^{\otimes n} \rangle : \\ H^{(n)} \in L^{2}(\widehat{\mathbb{R}^{n}; dx})_{\mathbb{C}}, n \in \mathbb{N}, \|H\|_{L^{2}(\nu)} < \infty \right\} \subset L^{2}(\nu)$$

$$E^{2}(\nu) := \left\{ H = \sum_{n=0}^{\infty} \langle H^{(n)}, \cdot^{\otimes n} \rangle : H^{(n)} \in L^{2}(\widehat{\mathbb{R}^{n}; dx})_{\mathbb{C}}, \sum_{n=0}^{\infty} n! |H^{(n)}|^{2} < \infty \right\}$$

Remark:

Using the series representation of elements from $E^2(\nu)$ given above one can define them pointwisely on $L^2(\mathbb{R}; dx)_{\mathbb{C}}$. Furthermore

$$\infty > ||H||_{L^{2}(\nu)}^{2} = \sum_{n=0}^{\infty} n! |H^{(n)}|^{2}$$
$$= \sup_{P \in \mathbb{P}} \sum_{n=0}^{\infty} n! |P^{n \otimes} H^{(n)}|^{2} = \sup_{P \in \mathbb{P}} \int_{\mathcal{S}_{\mathbb{C}}'} |H(Pu)|^{2} d\nu(u),$$

where \mathbb{P} is the set of all finite rank orthogonal projections $P: L^2(\mathbb{R}; dx)_{\mathbb{C}} \to S_{\mathbb{C}}$. Hence the pointwisely defined restriction of elements from $E^2(\nu)$ to $L^2(\mathbb{R}; dx)_{\mathbb{C}}$ is an entire function and their norm is given in the same way as in the original work of Bargmann 1961 and Segal 1962.

S-transform of $F \in L^2(\mu)$:

$$SF(h) = \int_{\mathcal{S}'(\mathbb{R})} : \exp(\langle h, \omega
angle) : F(\omega) \, d\mu(\omega), \quad h \in \mathcal{S}_{\mathbb{C}}$$

S-transform of $\Phi \in \mathcal{G}'$:

$$S\Phi(h) = \langle\!\langle : \exp(\langle h, \cdot
angle) :, \Phi
angle
angle, \quad h \in \mathcal{S}_{\mathbb{C}}$$

note: the Wick exponential : $\exp(\langle h, \cdot \rangle)$:= $\exp(\langle h, \cdot \rangle - \langle h, h \rangle) \in \mathcal{G}$ for all $h \in \mathcal{S}_{\mathbb{C}}$

U-functional:

A mapping $U: \mathcal{S}_{\mathbb{C}} \to \mathbb{C}$ is called a U-functional, iff

$$\begin{array}{l} (i) \ \mathbb{C} \ni z \mapsto U(f + zg) \in \mathbb{C} \text{ is entire for all } f,g \in \mathcal{S}; \\ (ii) \text{ there exist } 0 \le A, B < \infty \text{ and a continuous norm } \| \cdot \| \text{ on } \mathcal{S} \text{ such that} \\ |U(zf)| \le A \exp\left(B|z|^2 \|f\|^2\right) \text{ for all } f \in \mathcal{S}, \ z \in \mathbb{C}. \end{array}$$

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Characterization theorem I:

The following statements are equivalent: (i) $U: S_{\mathbb{C}} \to \mathbb{C}$ is a U-functional and

$$\sup_{P\in\mathbb{P}}\int_{\mathcal{S}_{\mathbb{C}}'}\left| U(\lambda Pu)\right|^2 d\nu(u) < \infty \quad \text{for all } \lambda\geq 0$$

(ii) U is the S-transform of a unique $\Phi \in \mathcal{G}$.

Characterization theorem II:

The following statements are equivalent: (i) $U : S_{\mathbb{C}} \to \mathbb{C}$ is a U-functional and

$$\sup_{P\in\mathbb{P}}\int_{\mathcal{S}_{\mathbb{C}}'}\left|U(\varepsilon Pu)\right|^2d\nu(u)<\infty\quad\text{for some }\varepsilon>0.$$

(ii) U is the S-transform of a unique $\Phi \in \mathcal{G}'$.

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Corollary on square-integrability

The following statements are equivalent: (i) $\Phi \in (S)'$ and

$$\sup_{P\in\mathbb{P}}\int_{\mathcal{S}'_{\mathbb{C}}}\left|S\Phi(Pu)\right|^{2}d\nu(u)<\infty.$$

(ii) $\Phi \in L^2(\mu)$.

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Corollary on Malliavin smoothness Let $\Phi \subset (S)^{\prime}$ and

Let $\Phi \in (S)'$ and

$$\sup_{P\in\mathbb{P}}\int_{\mathcal{S}_{\mathbb{C}}'}\left|\mathcal{S}\Phi(\lambda Pu)\right|^2d\nu(u)<\infty\quad\text{for all }\lambda\geq0.$$

Then Φ is infinitely often Malliavin differentiable and the Malliavin derivatives of arbitrary order are contained in $L^{p}(\mu)$ for every $p \in [1, \infty)$.

Corollary on convergence

Let $(\Phi_n)_{n\in\mathbb{N}}$ be a sequence in \mathcal{G}' . If there exists $\varepsilon > 0$ such that $(S\Phi_n)(\varepsilon \cdot)$ is a Cauchy sequence in $E^2(\nu)$, then there exists $\Phi \in \mathcal{G}'$ such that $\lim_{n\to\infty} \Phi_n = \Phi$ in \mathcal{G}' .

Corollary on integrability

Let $(\Lambda, \mathcal{A}, m)$ be a measure space and $\Phi : \Lambda \to \mathcal{G}'$ a mapping. Assume: (i) $\Lambda \ni \lambda \mapsto S(\Phi(\lambda))(h) \in \mathbb{C}$ is a measurable function for all $h \in S_{\mathbb{C}}$. (ii) There exists a $q \in \mathbb{N}$ such that

$$\int_{\Lambda} \|(S\Phi)(2^{-q}\cdot)\|_{E^2(\nu)}\,dm < \infty.$$

Then Φ is Bochner integrable in \mathcal{G}_{-q} and

$$\int_{\Lambda} \Phi(\lambda) \, dm(\lambda) \in \mathcal{G}_{-q} \subset \mathcal{G}'.$$

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Applications to SPDEs

consider the following equation from turbulent transport

$$egin{aligned} dX_t(x) &= rac{
u(t)}{2} rac{\partial^2 X_t(x)}{\partial x^2} \, dt + \sigma(t) rac{\partial X_t(x)}{\partial x} \, dB_t^{I/S}, \quad t>0, x\in \mathbb{R} \ X_0 &= \delta_0, \end{aligned}$$

- the molecular viscosity $\nu : [0, \infty) \to (0, \infty]$ is locally integrable and the diffusion coefficient $\sigma : [0, \infty) \to [-\infty, \infty]$ is locally square integrable
- dB^{1/S} denotes stochastic integration w.r.t. Brownian motion in the Itô or Stratonovic sense, respectively
- was considered by P.-L. Chow, J. Potthoff and B. Øksendal in the space of Hida distributions

Itô interpretation of a transport equation

$$dX_t(x) = \frac{\nu(t)}{2} \frac{\partial^2 X_t(x)}{\partial x^2} dt + \sigma(t) \frac{\partial X_t(x)}{\partial x} dB'_t, \quad t > 0, x \in \mathbb{R}$$
(1)
$$X_0 = \delta_0,$$
(2)

if the function

$$(0,\infty)
i t\mapsto \kappa(t):=rac{\int_{[0,t]}\sigma^2(s)\,ds}{\int_{[0,t]}
u(s)\,ds}\in\mathbb{R}$$

is bounded in the vicinity of 0, then for every 0 $< T < \infty$ there exists a $s \in \mathbb{R}$ and a map

$$X: (0, T] \times \mathbb{R} \to \mathcal{G}_s$$

solving (1), (2)

Itô interpretation of a transport equation

if the function

$$(0,\infty)
i t \mapsto \kappa(t) := rac{\int_{[0,t]} \sigma^2(s) \, ds}{\int_{[0,t]}
u(s) \, ds} \in \mathbb{R}$$

is bounded in the vicinity of 0, then for every 0 < T < ∞ there exists a $s \in \mathbb{R}$ and a map

$$X: (0, T] imes \mathbb{R} \to \mathcal{G}_s$$

solving (1), (2)

- more precisely, for $s \in \mathbb{R}$ and $t \in (0, T]$ satisfying $2^{s}\kappa(t) < 1$, it holds $X_t(x) \in \mathcal{G}_s$ for all $x \in \mathbb{R}$
- $X_t(x)$ passes through Donsker's delta $\delta_x(\langle 1_{[0,t]}\sigma, \cdot \rangle)$ each time $\kappa(t)$ passes through the value 1

MATHEMATIK

Itô interpretation of a transport equation

if the function

$$(0,\infty)
i t \mapsto \kappa(t) := rac{\int_{[0,t]} \sigma^2(s) \, ds}{\int_{[0,t]}
u(s) \, ds} \in \mathbb{R}$$

is bounded in the vicinity of 0, then for every 0 < $T < \infty$ there exists a $s \in \mathbb{R}$ and a map

$$X: (0, T] imes \mathbb{R} \to \mathcal{G}_s$$

solving (1), (2)

■ in particular, the solution X satisfies

$$X_t(x) egin{cases} \in L^2(\mu), & ext{if } \kappa(t) < 1, \ = \delta_x(\langle 1_{[0,t]}\sigma, \cdot
angle), & ext{if } \kappa(t) = 1, \ \in \mathcal{G}', & ext{if } \kappa(t) > 1, \end{cases}$$

Stratonovic interpretation of a transport equation

$$dX_t(x) = \frac{\nu(t)}{2} \frac{\partial^2 X_t(x)}{\partial x^2} dt + \sigma(t) \frac{\partial X_t(x)}{\partial x} dB_t^S, \quad t > 0, x \in \mathbb{R}$$
(3)
$$X_0 = \delta_0,$$
(4)

there exists a map

$$X:(0,\infty) imes\mathbb{R} o\mathcal{G}$$

solving (3), (4), hence by the Corollary on Malliavin smoothness $X_t(x)$ is even infinitely often Malliavin differentiable and the Malliavin derivatives of arbitrary order are contained in $L^p(\mu)$ for every $p \in [1, \infty)$

a stochastic heat equation with general multiplicative colored noise

$$egin{aligned} &rac{\partial X(t,x)}{\partial t} = rac{1}{2} \Delta X(t,x) + X(t,x) \dot{W}(t,x), \quad t>0, x\in \mathbb{R}^d, \ &X(0,x) = u(x), \quad x\in \mathbb{R}^d, \end{aligned}$$

- with continuous and bounded initial condition u
- the product between X(t,x) and the centered Gaussian process $\dot{W}(t,x)$, $t > 0, x \in \mathbb{R}^d$, is treated in the Skorokhod and the Stratonovich sense
- the covariance structure of \dot{W} is given by

$$\mathbb{E}\left[\dot{W}(t,x)\dot{W}(s,y)
ight]=\gamma(t-s)\Lambda(x-y),\quad t,s>0,x,y\in\mathbb{R}^{d},$$

where γ and Λ are generalized functions

a stochastic heat equation with general multiplicative colored noise in Skorokhod interpretation

$$egin{aligned} &rac{\partial X(t,x)}{\partial t} = rac{1}{2} \Delta X(t,x) + X(t,x) \dot{W}(t,x), \quad t > 0, x \in \mathbb{R}^d, \ &X(0,x) = u(x), \quad x \in \mathbb{R}^d, \end{aligned}$$
 $\mathbb{E} \left[\dot{W}(t,x) \dot{W}(s,y)
ight] = \gamma(t-s) \Lambda(x-y), \quad t,s > 0, x, y \in \mathbb{R}^d, \end{aligned}$

Let $\gamma : \mathbb{R} \longrightarrow \mathbb{R}_+$, $\Lambda : \mathbb{R}^d \longrightarrow \mathbb{R}_+$ be measurable, non-negative definite functions, s.t., $\gamma \in S'(\mathbb{R}) \cap L^1_{loc}(\mathbb{R})$ and $\Gamma \in S'(\mathbb{R}^d)$, where $S'(\mathbb{R})$ and $S'(\mathbb{R}^d)$ are the spaces of tempered distributions over \mathbb{R} and \mathbb{R}^d , respectively. The Fourier transforms $\rho = \mathcal{F}\gamma$ and $\sigma = \mathcal{F}\Lambda$ are tempered measures on \mathbb{R} and \mathbb{R}^d , respectively and the product measure $\rho \otimes \sigma$ has full topological support. The measure σ satisfies

$$\int_{\mathbb{R}^d} \frac{1}{1+|\xi|^2} \sigma(d\xi) < \infty.$$

a stochastic heat equation with general multiplicative colored noise in Skorokhod interpretation

$$\frac{\partial X(t,x)}{\partial t} = \frac{1}{2} \Delta X(t,x) + X(t,x) \dot{W}(t,x), \quad t > 0, x \in \mathbb{R}^d,$$
(5)
$$X(0,x) = u(x), \quad x \in \mathbb{R}^d,$$
(6)

$$\mathbb{E}\left[\dot{W}(t,x)\dot{W}(s,y)
ight]=\gamma(t-s)\Lambda(x-y),\quad t,s>0,x,y\in\mathbb{R}^{d},$$

- under the assumptions from the previous page Y. Hu, J. Huang,
 D. Nualart, and S. Tindel, 2015, showed existence of a mild solution X to (5), (6)
- we proved that $X(t,x) \in \mathcal{G}$ for all $t > 0, x \in \mathbb{R}^d$, hence by the Corollary on Malliavin smoothness $X_t(x)$ is even infinitely often Malliavin differentiable and the Malliavin derivatives of arbitrary order are contained in $L^p(\mu)$ for every $p \in [1, \infty)$

a stochastic heat equation with general multiplicative colored noise in Stratonovich interpretation

$$\frac{\partial X(t,x)}{\partial t} = \frac{1}{2} \Delta X(t,x) + X(t,x) \dot{W}(t,x), \quad t > 0, x \in \mathbb{R}^d,$$
$$X(0,x) = u(x), \quad x \in \mathbb{R}^d,$$

$$\mathbb{E}\left[\dot{W}(t,x)\dot{W}(s,y)
ight]=\gamma(t-s)\Lambda(x-y),\quad t,s>0,x,y\in\mathbb{R}^{d},$$

Assume additionally that there exists a constant 0 $< \beta < 1$ s.t. for any $t \in \mathbb{R}$,

$$0 \leq \gamma(t) \leq C_{\beta}|t|^{-\beta}$$

for some constant 0 < ${\it C}_{\beta}<\infty$ and the measure σ satisfies

$$\int_{\mathbb{R}^d} \frac{1}{1+|\xi|^{2-2\beta}} \sigma(d\xi) < \infty.$$

a stochastic heat equation with general multiplicative colored noise in Stratonovich interpretation

$$\frac{\partial X(t,x)}{\partial t} = \frac{1}{2} \Delta X(t,x) + X(t,x) \dot{W}(t,x), \quad t > 0, x \in \mathbb{R}^d,$$
(7)
$$X(0,x) = u(x), \quad x \in \mathbb{R}^d,$$
(8)

$$\mathbb{E}\left[\dot{W}(t,x)\dot{W}(s,y)
ight]=\gamma(t-s)\Lambda(x-y),\quad t,s>0,x,y\in\mathbb{R}^{d},$$

- under the additional assumptions from the previous page Y. Hu,
 J. Huang, D. Nualart, and S. Tindel, 2015, showed existence of a mild solution X to (7), (8)
- we proved that $X(t,x) \in \mathcal{G}$ for all $t > 0, x \in \mathbb{R}^d$, hence by the Corollary on Malliavin smoothness $X_t(x)$ is even infinitely often Malliavin differentiable and the Malliavin derivatives of arbitrary order are contained in $L^p(\mu)$ for every $p \in [1, \infty)$

TECHNISCHE UNIVERSITÄT KAISERSLAUTERN

Thanks a lot for your attention!!!