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1 Introduction

Gaussian Analysis, in particular White Noise Analysis, has been intensively investigated and developed

in recent years. It gained interest by its applications in stochastic (partial) differential equations,

quantum physics and many more. One aspect is the construction, analysis and characterisation of

spaces of (generalised) random variables on infinite dimensional Gaussian spaces. In this paper we

deal with a specific type of random variables, which are natural in the context of stochastic partial

differential equations, as illustrated in Section 5 below via different examples. These random variables

have important properties, such as Malliavin differentiability. The type of random and generalised

random variables under consideration in this paper can be described as follows. Let H be a real

seperable Hilbert space carrying a self-adjoint operator (K,D(K)). Furthermore, N is a nuclear space,

densely and continuously embedded into H such that N ⊂ D(K). By the Bochner-Minlos theorem

one obtains a Gaussian measure µ on the dual space N ′ of N with covariance functional (·, ·)H . Via

the Wiener-Itô-Segal isomorphism the second quantisation Γ(K) of (K,D(K)) is defined on the space

L2(N ′, µ). The random variables GK ⊂ L2(N ′, µ) we investigate are exactly the C∞ vectors of the self-

adjoint operator Γ(K). Furthermore, the operator Γ(K) induces a finer topology on GK. The space of

generalised random variables G ′K is the dual space w.r.t. this topology. Important examples of random

variables and their dual space arise in this way. For example, the pair of Hida test functions and

distributions (S) and (S) ′, see e.g. [15], and the pair G and G ′ in [25] arise in this way for suitable

choices of the operator K. In particular, for K = λId, λ > 1, the elements of the space D(Γ(K)), which

contains GK, are infinitely often Mallivain differentiable along H.

Our results can be divided into two parts. The first part consists of a refinement of the one found in

[12]. There the authors used the concept of holomorphy on Hilbert spaces. In this paper we avoid this

technique, which also results in a shorter proof of the main result. Furthermore, this makes our result
1
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easier to apply. To overcome the usage of holomorphy on Hilbert spaces we use the concepts of the

S-transform (see Definition 2.6) and U-functionals (see Definition 2.7) as well as the famous character-

isation theorem by Potthoff and Streit (see Theorem 2.8). Observe that in applications (generalised)

random variables are often constructed and defined only via their S-transform, see also the example

in Section 5 below. Fortunately, this is the only ingredient we need for our characterisation. In the

second part we deal with two different kind of stochastic partial differential equations. The first one is

a stochastic transport equation, the second is the stochastic heat equation both with a multiplicative

noise. For both equations we give explicit conditions in terms of the coefficients of the equations such

that their respective solutions are actually contained in the much smaller space GaI ⊆ L2(µ), a > 1, of

smooth functions in the sense of Malliavin calculus.

This article is organized as follows. In Section 2 we briefly describe the functional analytic framework

and the main concept of Gaussian and white noise analysis we use throughout this paper to state our

main theoretical result. In particular we give the definition of the spaces GK and G ′K under consideration.

Theorem 2.11 contains our main result, a characterisation of GK and G ′K in terms of the S-transform. In

Section 3 we further introduce concepts of Gaussian Analysis. Section 4 contains the proof of Theorem

2.11. In Section 5 we present two applications from the field of stochastic partial differential equations.

In the first case we apply our main result to the stochastic partial differential equation

∂ut,x

∂t
=
1

2
ν(t)

∂2ut,x

∂x2
+
∂ut,x

∂x
σ(t)Ḃt t > 0, x ∈ R,

u(0, ·) = δ0,

 (STE)

where ∂ut,x
∂x σ(t)Ḃt is understood in the Itô sense. The coefficients ν and σ are allowed to be singular.

This equation was treated by several authors, see e.g. [24, 4, 11]. In particular, in [24] solutions were

constructed as elements of the Hida distribution space (S) ′, see the references for the precise statement.

We use the characterisation theorem to improve the results from [24] by showing that the solution

belongs to the space of regular distributions G ′. In particular, we determine explicitly in terms of the

coefficients the regularity of the solutions, see Theorem 5.2.

In the second part we consider a stochastic heat equation with general coloured noise, i.e.,

∂ut,x

∂t
=
1

2
∆ut,x + ut,xẆt,x, t > 0, x ∈ Rd,

u0,x = u0(x), x ∈ Rd,

 (SHE)

where the product between ut,x and the centered Gaussian process Ẇt,x, t > 0, x ∈ Rd, is treated in

the Skorohod and Stratonovich sense. The covariance of Ẇt,x is given in (5.12) below. Our results are

based on [17] and extend the results given there. In particular, we show that u(t, x) ∈ G ⊆ L2(µ) for all

t ∈ (0,∞), x ∈ Rd. This implies, using the results from [25], that u(t, x) is infinitely often Malliavin

differentiable. This was not shown in [17]. Eventually, in Section 6 we give an outlook for further

applications of the derived characterisation in the context of stochastic currents.

The following core results are achieved in this article:

(i) We prove a new characterisation theorem for the space GK and its dual G ′K, which is an improve-

ment of the result in [12].

(ii) In Example 2.12 we show how to construct appropriate nuclear triples to use our theoretical

result in (i) in order to analyse stochastic partial differential equations driven by a Gaussian

noise.



2 Preliminaries and Main Results 3

(iii) We derive explicit integrability conditions on the coefficients ν and σ of (STE) to determine

that the solution ut,x belongs to G ′λId, λ > 0.

(iv) For the Skorohod and Stratonovich version of (SHE) we improve results obtained in [17] and

show that the corresponding mild solution is contained in GλId, λ > 0. This implies that the

solution is smooth in the sense of Malliavin calculus.

The aim of this article is to further bridge the gap between classical stochastic analysis and white

noise analysis. Moreover, it is intended to show case that the combination of white noise analysis and

Malliavin calculus can be very fruitful.

2 Preliminaries and Main Results

To state our results we briefly introduce the main concepts of Gaussian analysis. The material in the

following can be found in e.g. [15, 22, 2, 19]. Henceforth in the sections 3, 4 and 5 we fix a separable real

Hilbert space (H, (·, ·)H). Furthermore, there exists a real nuclear countably Hilbert space N densely

and continuously embedded into H. In the following we briefly explain the notion of a nuclear countably

Hilbert space. I.e., there exists a family of real inner products {(·, ·)p}p∈N0 on N with induced norms

{‖·‖p}p∈N0 , where (·, ·)0 = (·, ·)H. Theses norms satisfy ‖ϕ‖p ≤ ‖ϕ‖p+1 for all ϕ ∈ N and p ∈ N0.
Furthermore the family {‖·‖p}p∈N0 is compatible, meaning that for all p, q ∈ N0 and every sequence

(ϕn)n∈N ⊆ N which is a fundamental sequence w.r.t. ‖·‖q and converges to zero w.r.t. ‖·‖p converges

also to zero w.r.t. ‖·‖q. This implies that the identity operator I : (N , ‖·‖p) −→ (N , ‖·‖q), p > q

extends linearly to an continuous, injective map with dense range from Hp to Hq, where Hp and Hq
denote the completion of N w.r.t. ‖·‖p and ‖·‖q, respectively. This extension is denoted by Ip,q. Also,

for every q ∈ N there exists a p ≥ q s.t. Ip,q is a Hilbert-Schmidt operator. Eventually, the space

N equipped with the metric d(ϕ,ψ) =
∞∑
p=0

2−p
‖ϕ−ψ‖p
1+‖ϕ−ψ‖p

is assumed to be a seperable complete metric

space. Hence, we obtain a chain of continuous and dense embeddings

N ⊆ Hp ⊆ Hq ⊆ H ⊆ H−p ⊆ H−q ⊆ N ′, p ≥ q (2.1)

where N ′, H−p and H−q denote the dual spaces of N , Hp and Hq, respectively. The dual pairing

between an element ϕ ∈ N and Φ ∈ N ′ is denoted by 〈ϕ,Φ〉 ∈ R. We consider N ′ to be equipped

with the weak topology and denote the respective Borel σ-field by F . Via the Bochner-Minlos theorem

we obtain measures defined on N ′ in the following way:

Definition 2.1. Let σ2 > 0 and define the continuous function

Cσ2 : N −→ C, ϕ 7→ exp

(
−
σ2

2
(ϕ,ϕ)H

)
. (2.2)

Observe that Cσ2 is positive definite and satisfies Cσ2(0) = 1. Hence, by the Bochner-Minlos theorem,

see e.g. [22, Theorem 1.5.2], we obtain a probability measure µσ2 defined on the Borel σ-field F of N ′

uniquely determined by the characteristic function Cσ2, i.e., it holds∫
N ′

exp
(
i 〈ϕ, ·〉

)
dµσ2 = Cσ2(ϕ) for all ϕ ∈ N . (2.3)

For σ2 = 1 we simply write µ instead of µ1. We denote by L2(µ) := L2(N ′,C;µ) the space of equivalence

classes of complex-valued functions which are square-integrable with respect to µ. The next proposition

is an immediate consequence of (2.2) and (2.3).
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Proposition 2.2. Let ϕ1, ..., ϕn ∈ N , n ∈ N. The image measure of µ under the map

Tϕ1,...,ϕn : N ′ −→ Rn,ω 7→ (〈ϕi,ω〉)i=1,...,n

is the Gaussian measure with mean zero and covariance matrix C = ((ϕi, ϕj)H)1≤i,j≤n on Rn, i.e.,

µ ◦ T−1ϕ1,...,ϕn = N(0, C).

An important subspace of L2(µ) is the space of polynomials P(N ′) on N ′. A polynomial F ∈ P(N ′) is

a function on N ′ of the form F(ω) = p(〈ϕ1,ω〉 , ..., 〈ϕk,ω〉)), where k ∈ N, ω ∈ N ′, ϕ1, ..., ϕk ∈ N ,

and p is a complex polynomial in k variables. An elementary proof shows that P(N ′) is dense in L2(µ).

The subspace P(n)(N ′), n ∈ N0, is the space of all polynomials F where p is of degree at most n. Now

we define orthogonal subspaces W(n)(µ) for n ∈ N0. Define

W(0)(µ) :=span(1),

W(n)(µ) :=P(n−1)(N ′)⊥ ∩ P(n)(N ′), n ∈ N,

where P(n)(N ′) denotes the closure of P(n)(N ′) and P(n−1)(N ′)⊥ the orthogonal complement of

P(n−1)(N ′) in L2(µ), respectively. For n ∈ N the subspace W(n) is called the space of n-th order

chaos. It follows by definition of
(
W(n)(µ)

)
n∈N0

and the density of P(N ′) in L2(µ) that L2(µ) is the

orthogonal sum of the subspaces W(n)(µ), n ∈ N0. A characteristic element of W(n)(µ), n ∈ N0, is

given by

N ′ 3 ω 7→ Hn,(ϕ,ϕ)H (〈ϕ,ω〉) ∈ R,

where ϕ ∈ N and Hn,(ϕ,ϕ)H is the n-th Hermite polynomial with parameter (ϕ,ϕ)H . The family of

Hermite polynomials with parameter α2 > 0 is defined via its generating function

exp

(
−α2

t2

2
+ tx

)
=

∞∑
n=0

Hn,α2(x)
tn

n!
.

From Proposition 2.2 we obtain for n,m ∈ N0 and ϕ, ξ ∈ N∫
N ′

Hn,(ϕ,ϕ)H (〈ϕ,ω〉)Hn,(ξ,ξ)H (〈ξ,ω〉)dµ = δn,mn!(ϕ, ξ)
n
H = δn,mn!

(
ϕ⊗n, ξ⊗n

)
H⊗n . (2.4)

Let n ∈ N0 be fixed and I a finite index set and ϕi ∈ N , αi ∈ C for i ∈ I. Define the function in L2(µ)

N ′ 3 ω 7→ 〈∑
i∈I
αiϕ

⊗n
i , :ω⊗n :

〉
:=
∑
i∈I
αiHn,(ϕi,ϕi)H (〈ϕi,ω〉) ∈ C. (2.5)

From (2.4) we obtain the Itô isometry between L2(µ) and the symmetric tensor product H⊗̂nC∥∥∥∥∥
〈∑
i∈I
αiϕ

⊗n
i , :·⊗n :

〉∥∥∥∥∥
2

L2(µ)

= n!

∥∥∥∥∥∑
i∈I
αiϕ

⊗n
i

∥∥∥∥∥
2

H⊗n
C

. (2.6)

Observe that we consider on the symmetric space H⊗̂nC the scalar product n!(·, ·)H⊗n
C

, where (·, ·)H⊗n
C

is

the usual scalar product on H⊗nC , see also [15, Appendix 2]. From the polarization identity we obtain

that elements
∑
i∈I
αiϕ

⊗n
i ∈ H⊗̂nC as above form a dense subset of the complex symmetric tensor product

H⊗̂nC . Hence, via (2.6) and an approximating sequence, for an element f(n) ∈ H⊗̂nC we obtain an element

Fn ∈Wn(µ) which we denote by Fn =
〈
f(n), :·⊗n :

〉
satisfying

‖Fn‖2L2(µ) = n!
∥∥∥f(n)∥∥∥2

H⊗n
C

.
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Conversely, representing usual monomials via Hermite polynomials, we obtain that every element Fn ∈
W(n)(µ) has a representation as Fn =

〈
f(n), :·⊗n :

〉
where

〈
f(n), :·⊗n :

〉
denotes again the L2(µ)-limit of

elements as in (2.5). Let Γ(H) be the symmetric Fock space over H, i.e.,

Γ(H) :=
{
~f =

(
f(0), f(1), f(2), . . .

) ∣∣ f(n) ∈ H⊗̂nC for all n ∈ N0,
∞∑
n=0

n!
∥∥∥f(n)∥∥∥2

H
<∞}. (2.7)

Observe that we used the abbreviation
∥∥f(n)∥∥H for the norm

∥∥f(n)∥∥H⊗n
C

in (2.7) and use henceforth

similar notation for corresponding scalar products to keep the notation simple. The space Γ(H) carries

the scalar product

(~f, ~g)Γ(H) =

∞∑
n=0

n!(fn, gn)H , for ~f, ~g ∈ Γ(H).

The above derived decomposition of L2(µ) is the subject of the Wiener-Itô-Segal theorem.

Theorem 2.3 (Wiener-Itô-Segal isomorphism). The mapping

I : Γ(H)→ L2(µ), ~f 7→ ∞∑
n=0

〈
f(n), :·⊗n :

〉
(2.8)

is a unitary isomorphism.

Hence, each F ∈ L2(µ) has a unique chaos decomposition F =
∞∑
n=0

〈
f(n), :·⊗n :

〉
with kernels f(n) ∈ H⊗̂nC ,

n ∈ N0, and ‖F‖2L2(µ) =
∞∑
n=0

n!
∥∥f(n)∥∥2H . From this point we can easily define spaces of random and

generalised random variables via the concepts of second quantisation, for more details see [15, Chapter

3.C]. Let (A,D(A)) be a closed and densely defined linear operator on H with ‖Af‖H ≥ ‖f‖H for all

f ∈ D(A). We define the Hilbert space (GA, ‖·‖GA) as the domain of the second quantisation of A, i.e.,

GA =

{
F =

∞∑
n=0

〈
f(n), :·⊗n :

〉
∈ L2(µ)

∣∣∣∣∣ f(n) ∈ D(A)⊗n),

∞∑
n=0

n!‖A⊗nf(n)‖2H <∞
}
,

‖F‖2GA : =

∞∑
n=0

n!‖A⊗nf(n)‖2H , F ∈ GA.

The main objective of this paper is to study and characterize the space GA for a special choice of A.

To this end we first lift the rigging in (2.1). Therefore we need the following lemma.

Lemma 2.4. Let (A1, D(A1)) and (A2, D(A2)) be two closed and densely defined linear operators on

H satisfying ‖Aif‖H ≥ ‖f‖H for all f ∈ D(Ai) and i = 1, 2. Assume that D(A1) is continuously and

densely embedded into D(A2), where both spaces are equipped with ‖A1·‖H and ‖A2·‖H, respectively.

Then the space GA1 is densely and continuously embedded into GA2.

Proof: This follows as in [15, Chapter 3.B, p.54-55]. �

From the theory of closed and symmetric bilinear forms, see e.g. [26], there exists for every p ∈ N a

linear closed and densely defined linear operator (Ap, D(Ap)) on H s.t. for all p ∈ N and f, g ∈ Hp it

holds (f, g)p = (Apf,Apg)H . By the previous considerations and Lemma 2.4 we can form the Hilbert

spaces (Hp) := GAp together with their dual spaces (H−p) := (Hp) ′, p ∈ N, and obtain the chain of

continuous and dense embeddings

(N ) ⊆ (Hp) ⊆ (Hq) ⊆ L2(µ) ⊆ (H−q) ⊆ (H−p) ⊆ (N ) ′, p ≥ q,
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where (N ) =
⋂
p∈N(Hp) is equipped with the projective limit topology of the spaces ((Hp))p∈N, see

also [28, Section II.5.], and (N ) ′ =
⋃
p∈N(H−p) is the dual space of (N ) carrying the inductive limit

topology of the spaces ((H−p))p∈N, see also [28, Section II.6.]. The dual pairing between elements

F ∈ (N ) and Φ ∈ (N ) ′ is denoted by 〈〈F,Φ〉〉 := Φ(F).

We now specify the assumption on an operator (K,D(K)) for which we want to study the space GK and

its dual space in greater detail.

Assumption 2.5. Let (K,D(K)) be a densely defined self-adjoint operator on H with the properties:

(i) The spectrum spec(K) of K satisfies spec(K) ⊆ [1,∞),

(ii) N ⊆ D(K) and the closure of (K,N ) equals (K,D(K)), i.e., N is a core for (K,D(K)),

(iii) K : (N , τ) −→ (N , τ) is continuous and bijective.

For an operator (K,D(K)) satisfying the Assumptions 2.5 we denote by (Ks, D(Ks)), s ∈ N, the closure

of (Ks,N ) defined on H. In particular, (Ks, D(Ks)) satisfies the Assumptions 2.5, too. Thus, by the

same arguments as above, for such an operator (K,D(K)) we define GK,s := GKs and GK,−s := G ′K,s. Once

more, we obtain the continuous and dense embeddings

GK ⊆ GK,s ⊆ GK,l ⊆ L2(µ) ⊆ GK,−l ⊆ GK,−s ⊆ G ′K, s ≥ l,

where GK =
⋂
s∈N GK,s is equipped with the projective limit topology of the spaces (GK,s)s∈N and

G ′K =
⋃
s∈N GK,−s is the dual space of GK carrying the inductive limit topology of the spaces (GK,−s)s∈N.

Definition 2.6. For Φ ∈ (N ) ′, its S-transform is defined by

SΦ : N → C, ϕ 7→ 〈〈:exp (〈ϕ, ·〉):, Φ〉〉,

where : exp (〈ϕ, ·〉) : =
∞∑
n=0

1
n! 〈ϕ

⊗n, :·⊗n :〉 = exp
(
〈ϕ, ·〉 − 1

2 〈ϕ,ϕ〉
)
∈ (N ) is the Wick exponential of

ϕ ∈ N .

For the next theorem, we need the notion of U-functionals:

Definition 2.7. A map U : N → C is called a U-functional, if the following two conditions are fulfilled

(i) U is ray-entire, i.e. for all ϕ,ψ ∈ N , the function

R 3 x 7→ U(ϕ+ xψ)

extends to an entire function on C,

(ii) U is uniformly bounded of exponential order 2, i.e. there exist 0 ≤ A,B < ∞ and p ∈ N s.t. for

all ϕ ∈ N and λ ∈ C it holds

|U(λϕ)| ≤ A exp
(
B |λ|2 ‖ϕ‖2p

)
,

here U denotes the extension of U to NC given in (i).

The following important characterisation theorem shows that there is a bijection between (N ) ′ and the

set of U-functionals. For a proof see [18, Theorem 11].

Theorem 2.8. The S-transform is a bijection between (N ) ′ and the set of U-functionals.

Our goal is to characterize the spaces GK,s, s ∈ Z, in terms of U-functionals. To this end we first explain

how the pairs of spaces ((N ), (N ) ′) and (GK,G ′K) are related. To this end we apply Lemma 2.4.
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Lemma 2.9. Assume (K,D(K) satisfies the Assumptions 2.5. The space (N ) is continuously and

densely embedded into GK. Hence the following chain of continuous and dense embeddings holds true

(N ) ⊆ GK ⊆ L2(µ) ⊆ G ′K ⊆ (N ) ′. (2.9)

Proof: Let s ∈ N be arbitrary. Since Ks : (N , d) −→ (N , d) is continuous there exists a p ∈ N and

K ∈ (0,∞) s.t. ‖Ksϕ‖H ≤ K ‖Apϕ‖H for all ϕ ∈ N . By the closedness of (Ks, D(Ks)) and (Ap,Hp)
we obtain that the norms ‖Ks·‖H , ‖Ap·‖H are compatible on N . Thus we obtain that (A1, D(A1)) =

(Ap,Hp) and (A2, D(A2)) = (Ks, D(Ks)) satisfy the assumption of Lemma 2.4. Therefore we obtain the

dense and continuous embedding of (Hp) into GK,s. The first embedding in (2.9) follows now by the

definition of (N ) and GK. The second embedding follows by the same argument for (K,D(K)) and the

identity operator on H. The remaining assertions follow immediately by the previous ones. �

Observe that the triple (N ,H, (K,D(K))) determines our probabilistic set up (2.9) completely.

Definition 2.10. Let m ∈ N and (ϕi)
m
i=1 ⊂ N be an orthonormal system in H. We call

P : N ′C → NC, Pη :=

m∑
i=1

〈ϕi, η〉ϕi

an orthogonal projection from N ′C into NC. We denote the set of all orthogonal projections from N ′C
into NC by P.

Recall the measure µ 1
2

on N ′ from above. On the complexification N ′C = N ′×N ′ we define the product

measure ν = µ 1
2
⊗ µ 1

2
. Now we can formulate the following characterisation of the spaces GK and G ′K

which is the main result of this paper.

Theorem 2.11. Let (K,D(K)) satisfy Assumption 2.5 and Φ ∈ (N ) ′ or equivalently let U be a U-

functional s.t. S−1U = Φ. Then for s ∈ Z the two statements

(i) Φ ∈ GK,s,
(ii) sup

P∈P

∫
N ′
C

|U(KsPη)|2 ν(dη) <∞
are equivalent. In particular, the following two equivalencies are true.

(i) Φ ∈ GK ⇐⇒ ∀s ∈ N : sup
P∈P

∫
N ′
C

|U(KsPη)|2 ν(dη) <∞.
(ii) Φ ∈ G ′K ⇐⇒ ∃s ∈ N : sup

P∈P

∫
N ′
C

|U(K−sPη)|
2
ν(dη) <∞.

In particular, for K = Id and Φ ∈ (N ) ′ we obtain the following equivalence

Φ ∈ L2(µ)⇐⇒ sup
P∈P

∫
N ′
C

|U(Pη)|2 ν(dη) <∞.
Before proceeding we present some typical examples of the functional analytic framework (H,N ) as

well as interesting choices for (K,D(K)). In particular, in Example 2.12(ii) we show how to construct

the necessary nuclear rigging (2.1) for typical examples arising in the contexts of stochastic partial

differential equations, see Section 5.2.

Example 2.12. (i) Let d1, d2 ∈ N. The real Hilbert space H := L2(Rd1 ;Rd2) and the nuclear

space N = S(Rd1 ;Rd2) of square integrable functions and Schwartz functions mapping from
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Rd1 to Rd2 respectively. Different examples for a family of seminorms (‖·‖p)p∈N0 defined

on S(Rd1 ;Rd2) satisfying the assumptions above can be found in [26, Appendix to V.3]. For

d1 = d2 = 1 this setting is called the standard White noise setting. Observe that the process(〈(
⊗d1i=11[0,ti]

)×d2
, ·
〉)

t1,...,td1≥0
⊆ L2(N ′, µ) is modification of a (d1, d2)-Brownian sheet.

(ii) Let d1, d2 ∈ N. More generally as in (i) assume that σ is a tempered measure on Rd1, i.e.,∫
Rd1

1

1+|ξ|2m
σ(dξ) < ∞ for some m ∈ N, which has full topological support on Rd. Define H to

be the completion of N := S(Rd1 ;Rd2) w.r.t. the norm ‖ϕ‖H :=

( ∫
Rd1

|Fϕ|2 dσ

) 1
2

, where F

denotes the component-wise Fourier transform and |·| the euclidean norm on Rd2. Let (‖·‖p)p∈N
denote a increasing family of consistent seminorms on S(Rd1 ;Rd2) inducing the Schwartz space

topology. Since σ is tempered there exists a q ∈ N s.t. max{‖ϕ‖L1(Rd1 ,Rd2 ) , ‖ϕ‖H} ≤ ‖ϕ‖q for

all ϕ ∈ S(Rd1 ,Rd2). From the full support of σ and the continuity of F : L1(Rd1 ,Rd2) −→
L∞(Rd1 ,Rd2) one concludes the consistency of the norms ‖·‖q and ‖·‖H on S(Rd1 ;Rd2). Thus

in the sense of Gelfand triples we obtain the dense embeddings

S(Rd1 ;Rd2) ⊆ Hq ⊆ H ⊆ H−q ⊆ S ′(Rd1 ;Rd2).

Consequently we obtain the Gaussian measure µ on S ′(Rd1 ;Rd2) with covariance (·, ·)H, i.e., µ

satisfies ∫
S ′(Rd+1)

exp(i 〈ϕ,ω〉)µ(dω) = exp(−
1

2
(ϕ,ϕ)H), ϕ ∈ S(Rd1 ;Rd2).

In particular, the elements from the first order chaos 〈h, ·〉 ∈W(1) ⊆ L2(S ′(Rd1 ;Rd2), µ), h ∈ H,

define a Gaussian process index by H. In this way a huge variety of Gaussian processes, such

as fractional Brownian motion, can be constructed.

(iii) An important choice for the operator K is given by a multiple λ > 1 of the identity operator Id

on H, i.e., K = λId. The space GλId was systematically introduced in the White Noise setting

in [25]. An important feature of GλId is that this space is densely and continuously embedded

into the Meyer-Watanabe space D, see the last mentioned reference. Thus, elements from GλId
are infinitely often Malliavin differentiable and the Malliavin derivatives of arbitrary order are

contained in Lp(N ′, µ) for every p ∈ [1,∞).

3 Generalised Chaos decomposition and Gaussian Analysis on Com-

plex Spaces

In this section we state some additional aspects of Gaussian Analysis. For further reading, see e.g.

[15, 22, 2, 19].

3.1 Generalised Chaos decomposition

Next we generalise the chaos decomposition (2.8) of elements from L2(µ) to elements from the dual

spaces GK,−s, s ∈ N. Let s ∈ N and recall that GK,s is isometrically isomorphic to Γ(D(Ks)). Hence,

the dual space G ′K,s = GK,−s is isometrically isomorphic to Γ(D(Ks)) ′ ∼= Γ(D(Ks) ′), where ∼= denotes

an isometric isomorphism and D(Ks) ′ is the dual space of (D(Ks), (Ks·, Ks·)H). Observe that D(Ks) ′
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is isometrically isomorphic to the completion of H w.r.t. the inner product (K−s·, K−s·)H . An element

Φ ∈ GK,−s which is in correspondence with
(
Φ(n)

)
n∈N0

∈ Γ(D(Ks) ′) we also denote by

Φ =

∞∑
n=0

〈
Φ(n), :·⊗n :

〉
. (3.1)

The correspondence in (3.1) is called the generalised chaos decomposition of Φ. The dual pairing

between Φ and an element ψ ∈ GK,s with chaos decomposition ψ =
∞∑
n=0

〈
ψ(n), :·⊗n :

〉
is given by

〈〈ψ,Φ〉〉 =
∞∑
n=0

n!
〈
ψ(n), Φ(n)

〉
, (3.2)

where the dual pairing
〈
ψ(n), Φ(n)

〉
on the right-hand side of (3.2) is the one between the Hilbert space(

D((Ks)⊗n), ‖(Ks)⊗n·‖H
)

and its dual space D ((Ks)⊗n)
′
, for n ∈ N0.

From Lemma 2.9 we obtain that an element Φ ∈ G ′K has a well-defined S-transform SΦ : N −→ C. If

Φ ∈ G ′K has the generalised chaos decomposition Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
then the S-transform is given by

SΦ(ϕ) =

∞∑
n=0

〈
ϕ⊗n, Φ(n)

〉
, ϕ ∈ NC. (3.3)

3.2 Gaussian Analysis on Complex Spaces

In this part we briefly present the analogon of the orthogonal decomposition of L2(µ) for a closed

subspace E2(ν) of L2(N ′C, ν). The major difference between the space L2(µ) and E2(ν) is that in the

latter case there is no need for using Hermite polynomials, see Proposition 3.2. The underlying reason

is that the monomials of different order automatically form an orthogonal system in L2(C, e−|z|
2
eucdz).

The proofs of the next two propositions are elementary and therefore we skip them.

Proposition 3.1. Let ϕ1, ..., ϕn ∈ N , n ∈ N. The image measure of ν under the map

Tϕ1,...,ϕn : N ′C −→ Cn, η 7→ (〈ϕi, η〉)i=1,...,n

is absolutely continuous w.r.t. the Lebesgue measure dz on Cn and has the Radon-Nikodym derivative

dν ◦ T−1ϕ1,...,ϕn
dz

(z) =
1

πn
e−z

TCz, z ∈ Cn

where C = ((ϕi, ϕj)H)1≤i,j≤n ∈ R
n×n.

The space of polynomials P(N ′C) on N ′C is given by collection of all functions G : N ′C → C which are

given as G(η) = p(〈ϕ1, η〉 , ..., 〈ϕk, η〉), where p is a complex polynomial in k ∈ N variables and ϕi ∈ N ,

for i = 1, .., k.

Proposition 3.2. Let m,n ∈ N, ϕ,ψ ∈ N . Then it holds

(〈ϕ, ·〉n , 〈ψ, ·〉m)L2(ν) = δm,n · n! · (ϕ
⊗n, ψ⊗n)H. (3.4)

In particular, P(N ′C) ⊆ L2(ν).
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Similar as in the derivation of Theorem 2.3, for f(n) ∈ H⊗̂nC we can define an element in L2(ν) denoted

by
〈
f(n), ·⊗n

〉
which is given as the L2(ν)-limit of polynomials, i.e.,〈

f(n), ·⊗n
〉
:= lim

m→∞
lm∑
k=1

αk,m 〈ϕk,m, ·〉n ∈ L2(ν),

where lm ∈ N, αk,m ∈ C, ϕk,m ∈ N for all k = 1, ..., lm, m ∈ N, and it holds

f(n) = lim
m→∞

lm∑
k=1

αk,mϕ
⊗n
k,m ∈ H

⊗̂n
C .

In particular, the orthogonality relation (3.4) stays valid in the limit case, i.e., for f(n), g(n) ∈ H⊗̂nC it

holds (〈
f(n), ·⊗n

〉
,
〈
g(n), ·⊗n

〉)
L2(ν)

= δm,n · n! · (f(n), g(n))H. (3.5)

In contrast to the real case, the polynomials P(N ′C) are not dense in L2(ν). Their closure is the so

called Bargmann-Segal space E2(ν), see also [12], which is given by

E2(ν) := P(N ′C)
L2(ν)

=
{ ∞∑
n=0

〈
g(n), ·⊗n

〉 ∣∣ g(n) ∈ H⊗̂nC ,
∞∑
n=0

n!
∥∥∥g(n)∥∥∥2

H
<∞}.

4 Proof of Theorem 2.11

This section is devoted to the proof of Theorem 2.11, which is our main result.

Recall the chain of continuous embeddings from (2.1). This chain lifts to the n-fold symmetric com-

plexified tensor powers, see e.g. [15, Chapter 3.B], i.e, we obtain continuous embeddings

N ⊗̂nC ⊆ H⊗̂np,C ⊆ H
⊗̂n
q,C ⊆ H

⊗̂n
C ⊆ H⊗̂n−q,C ⊆ H

⊗̂n
−p,C ⊆ N

′⊗̂n
C , p ≥ q,

where N ⊗̂nC :=
⋂
p∈NH

⊗̂n
p,C is equipped with the projective limit topology of the Hilbert spaces H⊗̂np,C,

p ∈ N and N ′⊗̂nC is the dual space of N ⊗̂nC which satisfies N ′⊗̂nC =
⋃
p∈NH

⊗̂n
−p,C and carries the inductive

limit topology of the spaces H⊗̂n−p,C, p ∈ N.

The operator K : N −→ N was assumed to be bijective and continuous, hence by the inverse mapping

theorem Ks, s ∈ Z, is also continuous, see [27, Corollary I.2.12(b)]. By the same procedure which

leads to tensor powers of operators between Hilbert spaces, we can define (Ks)⊗n for s ∈ Z and n ∈ N
as a well-defined, linear and continuous operator on N ⊗̂nC . Observe that (Ks)⊗n is bijective from

N ⊗̂nC into itself. Observe that the tensor powers ((Ks)⊗n, D((Ks)⊗n)) are self-adjoint on H⊗̂nC , where

D((Ks)⊗n) = H⊗̂nC if s ≤ 0, for all s ∈ Z. Hence, for all s ∈ Z and n ∈ N we can define an extension of

(Ks)⊗n to N ′⊗̂nC in the following way:

(Ks)⊗n : N ′⊗̂nC −→ N ′⊗̂nC , Φ 7→ (Ks)⊗nΦ := Φ ◦ (Ks)⊗n. (4.1)

For the next proposition recall that every element Φ ∈ (N ) ′ has a generalised chaos decomposition

Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
where for some p ∈ N it holds Φ(n) ∈ H⊗̂n−p,C ⊆ N

′⊗̂n
C for all n ∈ N0.

Proposition 4.1. Let s ∈ Z. Then it holds

GK,s =

{
Φ =

∞∑
n=0

〈
Φ(n), :·⊗n :

〉
∈ (N ) ′

∣∣∣∣∣ (Ks)⊗nΦ(n) ∈ H⊗̂nC ,

∞∑
n=0

n!
∥∥∥(Ks)⊗nΦ(n)

∥∥∥2
H
<∞} , (4.2)

where (Ks)⊗nΦ(n) in (4.2) is defined via (4.1).
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Proof: Denote the set on the right-hand side of (4.2) by As. We split the proof into two parts. First let

s be non-negative. In this case the inclusion GK,s ⊆ As follows immediately by the definition of GK,s. Now

let Φ ∈ As, i.e., Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
∈ (N ) ′ s.t. (Ks)⊗nΦ(n) ∈ H⊗̂nC and

∞∑
n=0

n!
∥∥(Ks)⊗nΦ(n)

∥∥2
H < ∞.

To prove that Φ ∈ GK,s it suffices to show that Φ(n) ∈ D(Ks)⊗̂n for all n ∈ N. By assumption, for all

n ∈ N there exists a ψ(n) ∈ H⊗̂nC s.t.(
ϕ(n), ψ(n)

)
H

=
〈
ϕ(n), (Ks)⊗nΦ(n)

〉
=
〈
(Ks)⊗nϕ(n), Φ(n)

〉
, ∀ϕ(n) ∈ N ⊗̂nC .

Using [26, Theorem VIII.33] we obtain that (Ks)⊗n : D((Ks)⊗n) −→ H⊗̂nC is bijective and self-adjoint.

Hence, we can find a ψ̃(n) ∈ D((Ks)⊗n) s.t. (Ks)⊗nψ̃(n) = ψ(n). From the self-adjointness of (Ks)⊗n we

can conclude Φ(n) = ψ̃(n), where · is the natural complex conjugation on the complexified vector space

H⊗̂nC , which finishes the proof for non-negative s.

For the second part we replace s by −s, s ∈ N. Recall that GK,−s ∼= Γ(D(Ks) ′). Denote by H⊗̂nC
‖(K−s)⊗n·‖

the abstract completion of H⊗̂nC w.r.t. ‖(K−s)⊗n·‖. One easily checks via the Riesz isomorphism that

H⊗̂nC
‖(K−s)⊗n·‖

3 (Φ
(n)
k )k∈N 7→ lim

k→∞
(
(Ks)⊗n·, (K−s)⊗nΦ

(n)
k

)
H
∈
(
D((Ks)⊗n)

) ′
(4.3)

is an isometric complex conjugate linear isomorphism. Hence, the inclusion GK,−s ⊆ A−s follows. Now

let Φ ∈ A−s with generalised chaos decomposition Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
. It suffices to show Φ(n) ∈

(D((Ks)⊗n))
′

for all n ∈ N. By assumption, for every n ∈ N there exists a ψ(n) ∈ H⊗̂nC s.t.〈
ϕ(n), Φ(n)

〉
=
〈
(K−s)⊗n(Ks)⊗nϕ(n), Φ(n)

〉
=
(
(Ks)⊗nϕ(n), ψ(n)

)
H
, ∀ϕ(n) ∈ N ⊗̂nC .

Since D((Ks)⊗n) = (K−s)⊗nH⊗̂nC is dense in H⊗̂nC there exists a sequence (χ
(n)
k )k∈N in H⊗̂nC s.t.

(K−s)⊗nχ
(n)
k −→ ψ(n) as k→∞ in H⊗̂nC for all n ∈ N. Hence, by (4.3) we obtain Φ(n) ∈ (D((Ks)⊗n))

′

which finishes the proof.

�

Now let n ∈ N and P ∈ P be given by P =
m∑
j=1

〈ϕj, ·〉ϕj, where (ϕj)
m
j=1 ⊂ N is an orthonormal system in

H. We consider P as an orthogonal projection on HC onto the closed subspace spanC{ϕj, j = 1, ...,m}.

Observe that the n-th tensor power P⊗n of P defines a orthogonal projection onto the closed subspace

spanC
{
⊗̂ni=1ϕji | ji ∈ {1, ...,m} for i = 1, ..., n

}
of H⊗̂nC , where

⊗̂ni=1ϕji =
1

n!

∑
σ∈Sn

⊗ni=1ϕjσ(i)

and Sn denotes the set of all permutations of n elements in the following way. We extend P⊗n to a

linear operator on N ′⊗̂nC via

P⊗n : N ′⊗̂nC −→ N ⊗̂nC , Φ 7→ ∑
α∈{0,1,...n}m
m∑
i=1

αi=n

〈
̂⊗mi=1ϕ

⊗αi
i , Φ

〉
̂⊗mi=1ϕ

⊗αi
i .

Observe that for n ∈ N, Φ(n), Ψ(n) ∈ N ′⊗̂nC and P ∈ P given as above it holds
〈
P⊗nΦ(n), Ψ(n)

〉
=〈

P⊗nΨ(n), Φ(n)
〉
.
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Lemma 4.2. Let Φ(n) ∈ N ′⊗̂nC , n ∈ N0, fulfil sup
P∈P

∞∑
n=0

n!‖P⊗nΦ(n)‖2H <∞. Then it holds

(
Φ(n)

)
n∈N0

∈ Γ(H) and sup
P∈P

∞∑
n=0

n!‖P⊗nΦ(n)‖2H =

∞∑
n=0

n!‖Φ(n)‖2H.

Proof: Since N is separable we can choose a dense set {ẽk}k∈N of N . Applying the Gram-Schmidt

procedure to {ẽk}k∈N we obtain a orthonormal basis (ek)k∈N of H s.t. ek ∈ N for all k ∈ N. De-

fine for l ∈ N the projection Pl :=
l∑
k=1

〈ek, ·〉 ek ∈ P. By assumption we know that the sequence((
P⊗nl Φ(n)

)
n∈N

)
l∈N
⊆ Γ(H) is bounded. Therefore we can find a weakly convergent subsequence((

P⊗nlm Φ
(n)
)
n∈N

)
m∈N

with weak limit
(
g(n)

)
n∈N0

∈ Γ(H). In particular P⊗nlm Φ
(n) converges weakly to

g(n) ∈ H⊗̂nC as m→∞ for all n ∈ N0, i.e.,〈
ϕ(n), P⊗nlm Φ

(n)
〉
=
(
ϕ(n), P⊗nlm Φ

(n)
)
H

m→∞−−−−→ (
ϕ(n), g(n)

)
H

for all ϕ ∈ H⊗̂nC .

It is clear that Φ(n) and g(n) coincide as distributions on the set

{
̂⊗∞
i=1e

⊗αi
i | α ∈ NN,

∞∑
i=1

αi = n

}
which

is total in N ⊗̂nC by the choice of (ek)k∈N. Thus Φ(n) = g(n) ∈ H⊗̂nC .

The last part of statement follows by the weak lower semicontinuity of the norm and the fact that for

P ∈ P the restriction of P⊗n to H⊗̂nC is an orthogonal projection. �

Now we are ready to prove the main result.

Proof of Theorem 2.11: Recall that GK =
⋂
s∈N GK,s and G ′K =

⋃
s∈N GK,−s. Hence, it suffices to show

for s ∈ Z that it holds

Φ ∈ GK,s ⇐⇒ sup
P∈P

∫
N ′
C

|SΦ(KsPη)|2 ν(dη) <∞. (4.4)

We make some observations which rely on (3.3), (3.5) and Lemma 4.2. Now let s ∈ Z and Φ =∞∑
n=0

〈
Φ(n), :·⊗n :

〉
∈ GK,s. Then it holds

‖Φ‖2K,s =
∑
n∈N

n!‖(Ks)⊗nΦ(n)‖2H

= sup
P∈P

∑
n∈N

n!‖P⊗n(Ks)⊗nΦ(n)‖2H = sup
P∈P

∫
N ′
C

∣∣∣∣∣∑
n∈N

〈
P⊗n(Ks)⊗nΦ(n), η⊗n

〉∣∣∣∣∣
2

ν(dη)

= sup
P∈P

∫
N ′
C

∣∣∣∣∣∑
n∈N

〈
(KsPη)⊗n, Φ(n)

〉∣∣∣∣∣
2

ν(dη) = sup
P∈P

∫
N ′
C

|SΦ(KsPη)|2 ν(dη).

Now let Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
∈ (N ) ′. The same calculations yield

sup
P∈P

∫
N ′
C

|SΦ(KsPη)|2 ν(dη) = sup
P∈P

∫
N ′
C

∣∣∣∣∣∑
n∈N

〈
(KsPη)⊗n, Φ(n)

〉∣∣∣∣∣
2

ν(dη)

= sup
P∈P

∫
N ′
C

∣∣∣∣∣∑
n∈N

〈
P⊗n(Ks)⊗nΦ(n), η⊗n

〉∣∣∣∣∣
2

ν(dη)
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= sup
P∈P

∑
n∈N

n!‖P⊗n(Ks)⊗nΦ(n)‖2H,

in the second line we used the definition of (Ks)⊗n given in (4.1). Hence, if the left-hand side is finite

we obtain by Lemma 4.2 that
(
(Ks)⊗nΦ(n)

)
n∈N ∈ Γ(H) which implies Φ ∈ GK,s by Proposition 4.1. �

From the proof of Theorem 2.11 we seek the following corollary.

Corollary 4.3. Assume the assumptions of Theorem 2.11 are satisfied and Φ ∈ (N ) ′. Let (ek)k∈N be

an orthonormal basis of H contained in N which is chosen as in the proof of Lemma 4.2. Further for

l ∈ N let Pl :=
l∑
k=1

〈ek, ·〉 ek ∈ P. The real sequence
∫
N ′
C

|SΦ(KsPlη)|
2 ν(dη), l ∈ N, is increasing in l.

Thus, the limit as l tends to infinity exists in [0,∞]. Further, for s ∈ Z the statement

lim
l→∞

∫
N ′
C

|SΦ(KsPlη)|
2 ν(dη) <∞, (4.5)

is equivalent to the statements in (4.4). If (4.5) is satisfied we also obtain

‖Φ‖2K,s = lim
l→∞

∫
N ′
C

|SΦ(KsPlη)|
2 ν(dη) <∞.

Remark 4.4. Via the spectral theorem for self-adjoint operators one could also introduce the space GK,s
for s ∈ R. In the proof of Theorem 2.11 we used that the operator Ks, s ∈ Z, maps N continuously

into itself. If for s ∈ R the operator Ks maps N continuously into itself the exact same proof as above

also leads to the corresponding statement in Theorem 2.11 for s ∈ R.

5 Applications

5.1 An Equation from Turbulent Transport and its Regularity

In this section we shall apply the derived characterisation to an equation from turbulent transport.

Until the end of this paper, we specify our general setting to be the white noise setting, i.e., H = L2(R)

and N = S(R), see Example 2.12(i). Hence, we write S ′(R) for N ′, the measure µ is called white noise

measure. We consider the case K =
√
2Id. The number

√
2 is arbitrary and any number γ > 1 leads

to the same space G = G√2Id and its dual space G ′ = G ′√
2Id

. For s ∈ Z we simply write Gs instead

of GK,s. These spaces were introduced and studied in [25]. Thus, we obtain that the elements Φ(n),

n ∈ N0, from the generalised chaos decomposition of an element Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
∈ G ′K satisfy

Φ(n) ∈ L̂2C(Rn). In particular, if Φ(n) = 0 for all but finitely many n ∈ N0 then we directly obtain

Φ ∈ L2(µ). Observe that for the choice of the operator K =
√
2Id the additional assumption in Remark

4.4 is obviously satisfied. Hence, in this case we formulate Theorem 2.11 as follows:

Corollary 5.1. Let Φ ∈ (N ) ′. Then for s ∈ R it holds

Φ ∈ Gs if and only if sup
P∈P

∫
S ′
C
(R)

∣∣∣SΦ(2
s
2Pη)

∣∣∣2 ν(dη) <∞.
In particular, the spaces G and G ′ are characterised as follows:

(i) Φ ∈ G ⇐⇒ ∀λ > 0 : sup
P∈P

∫
S ′
C
(R)

|SΦ(λPη)|2 ν(dη) <∞.
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(ii) Φ ∈ G ′ ⇐⇒ ∃ε > 0 : sup
P∈P

∫
S ′
C
(R)

|SΦ(εPη)|2 ν(dη) <∞.
For the rest of this subsection let us fix a Brownian motion (Bt)t≥0 which rises from the Kolmogorov

continuity theorem as a continuous modification of the family
(〈
1[0,t], ·

〉)
t≥0 ⊆ L

2(µ). We denote the

natural filtration of the Brownian motion (Bt)t≥0 by (Ft)t≥0, i.e., Ft = σ(Bs | s ∈ [0, t]), t ≥ 0.

In [4, 24, 6, 11, 20] a parabolic SPDE modelling the transport of a substance in a turbulent medium

is treated via white noise analysis. There the authors search for a solution u : R+ × Rd × Ω :−→
R, (t, x,ω) 7→ u(t, x,ω) describing the concentration of the substance, where t stands for the time, x

for the position and ω for the random parameter which will be suppressed in the following. For sake

of simplicity, we only consider here the one dimensional case d = 1. All calculations below generalise

to the multidimensional case. The SPDE under consideration is given by

∂ut,x

∂t
=
1

2
ν(t)

∂2ut,x

∂x2
+
∂ut,x

∂x
σ(t)Ḃt, t > 0, x ∈ R (5.1)

u(0, ·) = δ0, (5.2)

where ν describes the molecular viscosity of the medium and dBt denotes the Itô integral w.r.t. a

Brownian motion (Bt)t≥0 modelling the turbulence in the medium. The initial condition (5.2) is a

physical idealisation that at time zero the substance is only concentrated at the point x = 0. Thus, we

obtain an analogue of an integral kernel of the SPDE (5.3), as known in the field of partial differential

equations. Hence, more realistic and even random initial conditions can be realised via convolution, see

Remark 5.7 below. In [4, 24] the stochastic integral is treated in the Stratonovich sense and existence

of an L2-valued solution ut,x is shown. The Itô case is also treated in [4, 24]. In [4] the solution is

constructed as a generalised Brownian functional, see the last mentioned reference as well as [14] for

the precise meaning. In [24, 6] the solution ut,x is constructed in the space of Hida distributions (N ) ′.

Furthermore, in the last mentioned reference explicit conditions on ν and σ in terms of Hölder regularity

are given, such that ut,x ∈ L2(µ).

In the following we use Corollary 5.1 to improve the results in [24] by giving explicit conditions on the

coefficients ν(t), σ(t) s.t. ut,x ∈ Gs ⊆ (N ) ′, s ∈ Z, see Theorem 5.2 below.

To formulate (5.1), (5.2) in terms of white noise analysis we introduce the white noise process (wt)t≥0 ⊆
(S) ′. The element wt is given by its generalised chaos decomposition wt = 〈δt, ·〉, where δt ∈ S ′(R)
denotes the Dirac delta distribution at t ≥ 0. Furthermore, we introduce the Wick product on (S) ′.

For Φ,Ψ ∈ (S) ′ we define the Wick product Φ�Ψ ∈ (S) ′ via the S-transform, i.e., S(Φ�Ψ) = S(Φ)S(Ψ).

Observe that the product of two U-functionals is again a U-functional, hence, Φ � Ψ is well-defined by

Theorem 2.8. A rigorous interpretation of (5.1), (5.2) in terms of white noise analysis is now given as

follows. We search for a map u : R+ × R −→ (N ) ′ fulfilling

∂ut,x

∂t
=
1

2
ν(t)

∂2ut,x

∂x2
+ σ(t)wt �

∂ut,x

∂x
, t > 0, x ∈ R, (5.3)

(Sut,·(ϕ))t>0 is a Dirac sequence for all ϕ ∈ S(R). (5.4)

The initial condition (5.4) means that for all ϕ, g ∈ S(R) the following is valid

lim
t→0
∫
R

Sut,x(ϕ)g(x)dx = g(0).
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We explain the connection between the Itô term in (5.1) and the so called Hitsuda-Skorokhod term

σ(t)∂ut,x∂x �wt in (5.3) in Remark 5.7 below. In the following we denote by R the extended real numbers.

We formulate our existence result in the next theorem:

Theorem 5.2. Assume that ν : [0,∞) −→ R is strictly positive and locally integrable and σ : [0,∞) −→
R is locally square integrable. If the function (0,∞) 3 t 7→ κ(t) :=

∫
[0,t]

σ2(s)ds∫
[0,t]

ν(s)ds
∈ R is bounded in the

vicinity of 0 then for every T ∈ N there exists an s ∈ R and a map

u : (0, T ]×R −→ Gs
satisfying (5.4). Furthermore, for dt-a.e. t ∈ (0, T ] and all x ∈ R the map u is once differentiable

w.r.t. t and twice differentiable w.r.t. x at (t, x) and satisfies (5.3). In particular, for s ∈ R and

t ∈ (0, T ] satisfying 2sκ(t) < 1 it holds ut,x ∈ Gs for all x ∈ R.

Proof: The same computations as in [23, Section 5] yield a candidate for the S-transform of u:

Sut,x(ϕ) =
1√
2πϑ(t)

exp

(
−

1

2ϑ(t)

(
x−

〈
1[0,t]σ,ϕ

〉)2)
, ϕ ∈ S(R), (5.5)

where ϑ(t) =
∫

[0,t]

ν(s)ds, t > 0. One easily sees that (5.5) defines a U-functional satisfying (5.4). Via

Theorem 2.8 we obtain the element ut,x ∈ (N ) ′ having S-transform given by (5.5). If
∫

[0,t]

ν(s)ds =∫
[0,t]

σ(s)2 ds the corresponding Hida distribution ut,x is given by Donskers delta δx(
〈
1[0,t]σ, ·

〉
), see

e.g. [19, Example 13.9.]. The fact that ut,x satisfies (5.3) in the weak sense is proven [23]. In the

remaining part of the proof we show that for all T ∈ N there exists an s ∈ R s.t. ut,x ∈ Gs for all

(t, x) ∈ (0, T ]×R.

We divide the proof into two separate parts. In the first part we show that u is differentiable and

satisfies (5.3) in the above mentioned sense. In the second part we show that for all T ∈ N there exists

an s ∈ R s.t. ut,x ∈ Gs for all (t, x) ∈ (0, T ]×R.

Part 1: To show that u is differentiable and satisfies (5.3) in the above mentioned sense we use [15,

Theorem 4.41.]. We only show that u is differentiable w.r.t. t at every (t, x) ∈ D×R, where (0, T ] \D

is of Lebesgue measure zero. The treatment of the derivatives w.r.t. x is easier and can be done by

the same procedure. The fact that ut,x satisfies (5.3) can be seen by considering the corresponding

equation for the S-transform Sut,x. We make the following observation. Let ϕ ∈ S(R) and T ∈ N.

Via the fundamental theorem of Lebesgue calculus, the functions ϑ and t 7→ ρ(t) :=
∫

[0,t]

σ(s)ϕ(s)ds

are absolutely continuous and differentiable at dt-a.e. t ∈ (0, T ] with respective derivatives ν(t) and

σ(t)ϕ(t). The set of all t ∈ (0, T ] s.t. ϑ and ρ are differentiable at t we denote by D1. Hence, Su(·, x)(ϕ)
is differentiable at t ∈ D1 and for a zero sequence (hn)n∈N , s.t. |hn| ≤ t

2 , it holds

∂Sut,x(ϕ)

∂t
= lim
n→∞ Su(t+ hn, x)(ϕ) − S(ut,x(ϕ)

hn

=
1

2ϑ(t)
3
2

√
2π
exp

−
1

2ϑ(t)

x− ∫
[0,t]

σ(s)ϕ(s)ds


2
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×

−ν(t) − 2σ(t)ϕ(t)

x− ∫
[0,t]

σ(s)ϕ(s)ds

−

ν(t)

(
x−

∫
[0,t]

σ(s)ϕ(s)ds

)2
ϑ(t)

 .
Hence, for z ∈ C we obtain the estimate∣∣∣∣∂Sut,x(zϕ)∂t

∣∣∣∣ ≤ 1

2ϑ(t)
3
2

√
2π

exp

‖σ‖2L2T
ϑ(t)

|z|2 ‖ϕ‖2L2T


×

|ν(t)|+ |z|2 ‖ϕ‖2∞ σ(t)2 + (|x|+ ‖σ‖L2T |z| ‖ϕ‖L2T)2 + |ν(t)|
(
|x|+ ‖σ‖L2T |z| ‖ϕ‖L2T

)2
ϑ(t)


≤ 1

2ϑ(t)
3
2

√
2π

exp

‖σ‖2L2T
ϑ(t)

|z|2 ‖ϕ‖2L2T


×

|ν(t)|+ exp(|z|2 ‖ϕ‖2∞)σ(t)2 + C1 exp(‖σ‖2L2T |z|
2 ‖ϕ‖2L2T ) + |ν(t)|

C1 exp
(
‖σ‖2L2T |z|

2 ‖ϕ‖2L2T
)

ϑ(t)


≤ C3(t) exp

(
C2(t) |z|2 ‖ϕ‖2p

)(
|ν(t)|+ σ2(t) + 1

)

where ‖·‖L2T denotes the L2((0, T))-norm, ‖·‖∞ the L∞(R)-norm, p ∈ N is chosen s.t. for all ϕ ∈ S(R)

it holds max
{
‖ϕ‖L2T , ‖ϕ‖∞

}
≤ ‖ϕ‖p := ‖Apϕ‖L2(R) and

C1 = max{2 |x| , 2}, C2(t) =
1

ϑ(t)
‖σ‖2L2T + 1+ ‖σ‖

2
L2T
, C3(t) =

max
{
C1, 1+

C1
ϑ(t)

}
2ϑ(t)

3
2

√
2π

.

Observe that C2 and C3 are decreasing. Applying the fundamental theorem of Lebesgue calculus to

Su(·, x)(ϕ) it holds

∣∣∣∣Su(t+ hn, x)(ϕ) − S(ut,x(ϕ)hn

∣∣∣∣ =
∣∣∣∣∣∣∣
1

hn

∫
[t,t+hn]

∂Su(s, x)(ϕ)

∂s
ds

∣∣∣∣∣∣∣
≤ C3

(
t

2

)
exp

(
C2

(
t

2

)
|z|2 ‖ϕ‖2p

)
1

|hn|

∫
[t,t+hn]

|ν(s)|+ σ2(s) + 1 ds

Via the fundamental theorem of Lebesgue calculus it holds for dt-a.e. t

C4(t) := sup
n∈N

1

|hn|

∫
[t,t+hn]

|ν(s)|+ σ2(s) + 1 ds <∞. (5.6)

We denote the set of all t ∈ (0, T ] s.t. (5.6) holds true by D2. We conclude that for t ∈ D := D1 ∩D2
it holds

lim
n→∞ Su(t+ hn, x)(ϕ) − S(ut,x(ϕ)

hn
exists,∣∣∣∣Su(t+ hn, x)(ϕ) − S(ut,x(ϕ)hn

∣∣∣∣ ≤ C3( t2
)
C4(t) exp

(
C2

(
t

2

)
|z|2 ‖ϕ‖2p

)
.
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Now we apply [15, Theorem 4.41.] and obtain that u is differentiable w.r.t. t at (t, x) ∈ D × R. The

first part is finished.

Part 2: It is left to show that for every time T ∈ N we can find an s ∈ R s.t. ut,x ∈ Gs for all t ∈ (0, T ]

and x ∈ R. We prove this by using Corollary 5.1. To this end let P =∈ P be a projection as in

Definition 2.10, η1 + iη2 = η ∈ S ′C(R), where η1, η2 ∈ S ′(R) and ε > 0.

We obtain

|Sut,x(εPη)|
2 =

∣∣∣∣∣ 1√
2πϑ(t)

exp

(
−

1

2ϑ(t)

(
x− ε

〈
1[0,t]σ, Pη

〉)2)∣∣∣∣∣
2

=

∣∣∣∣∣ 1√
2πϑ(t)

exp

(
−

1

2ϑ(t)

(
x− ε

〈
P(1[0,t]σ), η

〉)2)∣∣∣∣∣
2

=
1

2πϑ(t)
exp

(
−
ε2

ϑ(t)

(x
ε
−
〈
P(1[0,t]σ), η1

〉)2)
exp

(
ε2

ϑ(t)

〈
P(1[0,t]σ), η2

〉2)
Now we calculate the integral of |S (ut,x) (εP·)|2 w.r.t. the measure ν = µ 1

2
⊗ µ 1

2
. Observe that the law

µ 1
2
◦
〈

P(1[0,t]σ)

‖P(1[0,t]σ)‖L2(R)

, ·
〉−1

is the centered Gaussian measure with variance 1
2 . Thus we conclude

∫
S ′
C
(R)

|S (ut,x) (εPη)|
2 dν(η)

=
1√

2πϑ(t)π

∫
R

exp

(
−
ε2

ϑ(t)

(x
ε
− y1

∥∥P(1[0,t]σ)∥∥L2(R)

)2)
exp

(
− |y1|2

)
dy1

× 1√
2πϑ(t)π

∫
R

exp

(
ε2

ϑ(t)
y22
∥∥P(1[0,t]σ)∥∥2L2(R)

)
exp

(
− |y2|2

)
dy2

=
1√

2πϑ(t)π

∫
R

exp

−

1+ ε2
∥∥P(1[0,t]σ)∥∥2L2(R)

ϑ(t)

y21 + y1 2εx
∥∥P(1[0,t]σ)∥∥L2(R)

ϑ(t)
−
x2

ϑ(t)

 dy1

× 1√
2πϑ(t)π

∫
R

exp

−

1− ε2
∥∥P(1[0,t]σ)∥∥2L2(R)

ϑ(t)

y22
 dy2. (5.7)

From this point we see that a necessary condition for sup
P∈P

∫
SC(R)

|S (ut,x) (εPη)|
2 ν(dη) to be finite for

some ε > 0 is that 1 ±
ε2‖P(1[0,t]σ)‖2L2(R)

ϑ(t) > 0. Since
ε2‖P(1[0,t]σ)‖2L2(R)

ϑ(t) ≤ ε2κ(t) we choose ε > 0 s.t.

0 < ε2κ(t) < 1. Now we can evaluate the Gaussian integrals in (5.7) and we seek

∫
S ′
C
(R)

|S (ut,x) (εPη)|
2 dν(η) =

exp
(
− x2

ϑ(t)

)
2πϑ(t)

1√
1−

ε4‖P(1[0,t]σ)‖4L2(R)

ϑ(t)2

exp

 ε2
∥∥P(1[0,t]σ)∥∥2L2(R)

x2

ϑ(t)ε2
∥∥P(1[0,t]σ)∥∥2L2(R)

+ ϑ(t)2



We conclude by Corollary 4.3 that for 0 < ε2κ(t) < 1 it holds

sup
P∈P

∫
S ′
C
(R)

|S (ut,x) (εPη)|
2 ν(dη) =

exp
(
− x2

ϑ(t)

)
2πϑ(t)

1√
1−

ε4‖1[0,t]σ‖4L2(R)

ϑ(t)2

exp

 ε2
∥∥1[0,t]σ∥∥2L2(R)

x2

ϑ(t)ε2
∥∥1[0,t]σ∥∥2L2(R)

+ ϑ(t)2


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Observe that by the assumptions on the coefficients ν and σ it holds that (0,∞) 3 t 7→ κ(t) ∈ R is

continuous. Consequently, by assumption κ is bounded on finite intervals (0, T ], T ∈ N. Hence, for

every T ∈ N we can choose ε > 0 s.t. 0 < ε2κ(t) < 1 for all t ∈ (0, T ]. Eventually, we conclude by (5.1)

that for s ∈ R satisfying 2
s
2 = ε it holds

ut,x ∈ Gs, for all t ∈ (0, T ], x ∈ R.

In the case κ(t) < 1 we can choose ε ≥ 1 which implies ut,x ∈ L2(µ). �

Remark 5.3. (i) As observed in [24], the solution ut,x passes through Donskers delta δx(
〈
1[0,t]σ, ·

〉
)

each time κ(t) passes through the value 1. In particular, the solution u satisfies

ut,x


∈ L2(µ), if κ(t) < 1,

= δx(
〈
1[0,t]σ, ·

〉
), if κ(t) = 1,

∈ G ′, if κ(t) > 1.

In the case κ(t) < 1 the solution ut,x is explicitly given by, see [24, Equation (3.13)],

ut,x =

2π ∫
[0,t]

ν(s) − σ2(s)ds


− 1
2

exp

−
(
2

∫
[0,t]

ν(s) − σ2(s)ds
)−1

(x−
〈
1[0,t]σ, ·

〉
)2

 .
In particular, in the case κ(t) < 1 Lemma 5.6 below implies that a version of ut,x is measurable

w.r.t. Ft.
(ii) Observe that the calculation in the proof of Theorem 5.2 shows that Donsker’s delta δx(〈f, ·〉),

x ∈ R, f ∈ L2(R), is an element of Gs for all s < 0 and δx(〈f, ·〉) /∈ L2(µ).

In the following let Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
∈ G ′. Recall that the S-transform of Φ is given by

SΦ(ϕ) =

∞∑
n=0

〈
ϕ⊗n, Φ(n)

〉
(5.8)

and the dual pairing
〈
ϕ⊗n, Φ(n)

〉
is given by the scalar product

(
ϕ⊗n, Φ(n)

)
L2(Rn)

. Hence, the S-

transform of Φ admits a natural extension to L2(R) which is also given by (5.8). The next lemma

follows immediately from the polarisation identity.

Lemma 5.4. Let Φ =
∞∑
n=0

〈
Φ(n), :·⊗n :

〉
∈ G ′ and I ⊆ R be measurable. Then the following are equiva-

lent:

(i) supp(Φn) ⊆ In for all n ∈ N.

(ii) SΦ(ϕ) = SΦ(1Iϕ) for all ϕ ∈ S(R).

Lemma 5.5. Let F =
∞∑
n=0

〈
F(n), :·⊗n :

〉
∈ L2(µ) and I ⊆ R. Then there exists a version F̃ of F which is

measurable w.r.t. σ(〈ξ, ·〉 , ξ ∈ S(R), supp(ξ) ⊆ I) if and only if supp(F(n)) ⊆ In for all n ∈ N.

Proof: It suffices to prove the statement for F =
〈
F(n), :·⊗n :

〉
, n ∈ N. Necessity can be proven as in

[14, Proposition 4.5.]. Sufficiency follows from construction of the element
〈
F(n), :·⊗n :

〉
∈ L2(µ). �

For the next lemma recall the Brownian motion (Bt)t≥0 as well as the corresponding natural filtration

(Ft)t≥0 defined above.
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Lemma 5.6. Assume that F : S ′(R) −→ C is measurable w.r.t. Ft, t ∈ [0,∞). Then there exists a

G : S ′(R) −→ C which is measurable w.r.t. At := σ(〈ξ, ·〉 | ξ ∈ S(R), supp(ξ) ⊆ [0, t)) and it holds

F = G µ-a.e. and vice versa.

Proof: Using [3, Corollary 2.9] it suffices to show that a version of Bs is measurable w.r.t. At for

s ∈ [0, t] and that a version of 〈ξ, ·〉 is measurable w.r.t. Ft for ξ ∈ S(R) with supp(ξ) ⊆ [0, t). Both

statements follow by the construction of
〈
1[0,s], ·

〉
∈ L2(µ), s ∈ [0, t]. �

Several remarks are in order.

Remark 5.7. (i) Let f : R −→ G ′ be given s.t. for (t, x) ∈ (0,∞)×R the map

R 3 y 7→ f(y) � u(t, x− y) ∈ G ′

is weakly in L1(R,B, dx), where B is the Borel σ-field and dx the Lebesgue measure on R, respec-

tively and u is defined in (5.5). I.e., for every F ∈ G it holds that R 3 y 7→ 〈F, f(y) � u(t, x− y)〉 ∈
C is in L1(R,B, dx). Then we can define the Pettis-integral

uft,x :=

∫
R

f(y) � ut,x−y dy ∈ G ′, (5.9)

see also [15, Proposition 8.1] and [25, Proposition 2.6.]. Under additional assumptions on f we

obtain that uf satisfies the initial condition uf0,x = lim
t→0uft,x = f(x) for all x ∈ R. If we assume

that the time and space derivatives d
dt ,

d
dx and d2

dx2
commute with the Pettis-integral (5.9) we

obtain that uf : R≥0 ×R −→ G ′ satisfies (5.3) with the initial condition uf0,x = f(x).

(ii) If we assume for the sake of simplicity that the initial data f in (i) is deterministic and an element

from S(R), all steps in (i) are justified and we obtain that uf given by (5.9) is an solution to

(5.3) with initial condition uf(0, x) = f(x) for all x ∈ R. From Theorem 5.2 and Lemma 5.4

we can conclude that (uft,x)t∈[0,T ], x ∈ R, is a generalised stochastic process and adapted in the

sense of [1, Definition 1]. In particular, if uft,x ∈ L2(µ) then it holds by Lemma 5.5 and 5.6 that a

version of uft,x is measurable w.r.t. Ft for all x ∈ R. It is well-known that for such a process the

Itô integral and the Hitsuda-Skorokhod integral coincide, see e.g. [15, Theorem 8.7.]. Indeed,

if for x ∈ R and T ∈ [0,∞) the process
(
σ(s)∂u

f
s,x
∂x

)
s∈[0,T ]

is in L2([0, T ];L2(µ)) then for t ∈ [0, T ]

the following identity is valid

t∫
0

σ(s)
∂ufs,x
∂x
�ws ds =

t∫
0

σ(s)
∂ufs,x
∂x

dBs µ-a.e.,

5.2 Stochastic Heat equation with general multiplicative colored Noise

In this section we apply our characterisation theorem to derive new results regarding the stochastic

heat equation with multiplicative noise having a very general covariance structure. The results in this

section are an extension of the results in [17, Section 3,4]. Indeed, we combine our main result with

the calculations made in [17] to improve the results given in the last mentioned reference. We start

by recalling the central objects introduced in Section 3 and 4 of [17] and relate them to our general

functional analytic framework. In Theorem 5.10 and 5.12 we formulate our new results regarding the

heat equation with multiplicative stochastic source term in the case of Skorohod and Stratonovich

product, respectively.
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Before we begin with our considerations let us introduce some notation. Throughout this entire sub-

section d ∈ N is fixed and by pt, t > 0, we denote the heat kernel given by pt(x) = (2πt)−
d
2 exp(− |x|

2

2t ),

x ∈ Rd. Furthermore, let (Ω,A,P) be an arbitrary probability space carrying two independent d-

dimensional Brownian motions (Bt)t≥0, (B̃t)t≥0. For x ∈ Rd we denote by (Bxt )t≥0 and (B̃xt )t≥0 the

processes (Bt + x)t≥0 and (B̃t + x)t≥0, respectively.

The stochastic partial differential equation we consider is informally given by

∂ut,x

∂t
=
1

2
∆ut,x + ut,xẆt,x, t > 0, x ∈ Rd, (5.10)

u0,x = u0(x), x ∈ Rd, (5.11)

with continuous and bounded initial condition u0. The product between ut,x and the centered Gaussian

process Ẇt,x, t > 0, x ∈ Rd, is treated in the Skorohod and the Stratonovich case, see [17]. The

covariance structure of Ẇ is given by

E
[
Ẇt,xẆs,y

]
= γ(t− s)Λ(x− y), (5.12)

where γ and Λ are generalized functions. The rigorous interpretation of (5.10) and (5.12) is given

below. We work under the following assumptions on γ and Λ.

Assumption 5.8. Let γ : R −→ R+, Λ : Rd −→ R+ be measurable, non-negative definite functions,

s.t., γ ∈ S ′(R)∩L1loc(R) and Γ ∈ S ′(Rd), where S ′(R) and S ′(Rd) are the spaces of tempered distributions

over R and Rd, respectively. The Fourier transforms ρ = Fγ and σ = FΛ are tempered measures on R

and Rd, respectively and the product measure ρ⊗σ has full topological support. The measure σ satisfies∫
Rd

1

1+ |ξ|2
σ(dξ) <∞.

To specify our functional analytic framework let γ and Λ satisfy Assumption 5.8. Throughout this

section we choose N = S(Rd+1) the real-valued Schwartz functions and define H as the abstract

completion of N w.r.t. the inner product

(f, g)H =

∫
R2

∫
R2d

f(t, x)g(s, y)γ(t− s)Λ(x− y)dxdydt ds

=

∫
R

∫
Rd

Ff(α, ξ)Fg(α, ξ)ρ(dα)σ(dξ).

In particular, µ denotes the mean zero Gaussian measure defined on N ′ = S ′(Rd+1) with covariance

given by the inner product (·, ·)H. For more details see Example 2.12(ii). As in the previous section we

consider K =
√
2Id and for s ∈ R we denote the spaces GK,GK,s simply by G,Gs, respectively. Equiv-

alently as in Corollary 5.1 our main result can be formulated under the above mentioned framework

as

Φ ∈ Gs ⇐⇒ sup
P∈P

∫
S ′
C
(Rd+1)

∣∣∣SΦ(2
s
2Pη)

∣∣∣2 ν(dη) <∞,
where s ∈ R. Before we proceed, some comments on Assumption 5.8 in comparison to the Assumptions

in the reference [17] are necessary.

Remark 5.9. (i) The assumptions made in 5.8 on γ and Λ are stronger than the ones made in

[17, Theorem 3.6.]. In particular, we assume that γ is a tempered distribution, which is a

stronger assumption than assuming merely local integrability of γ. The assumption on the

support of ρ ⊗ σ = Fγ ⊗ FΛ guarantees that the bilinear form (·, ·)H is positive definite
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on N = S(Rd+1). Furthermore, this property of γ and Λ implies that the nuclear space N
is continuously embedded into H, which is necessary to apply our results from the previous

sections.

(ii) One can also drop the assumption that ρ ⊗ σ have full topological support in Assump-

tion 5.8 by considering instead of N = S(Rd+1) the corresponding nuclear quotient space

N = S(Rd+1) mod N0, where N0 = {f ∈ S(Rd+1) |
∫

Rd+1

|Ff|2 dρ ⊗ σ = 0}. To simplify our

considerations below we stick to the assumptions as stated in 5.8.

(iii) Important examples of γ and Λ can be found in [16, 17], corresponding for example to white or

fractional noise.

5.2.1 Skorohod Case

To treat the Skorohod case let us recall what has been achieved in [17]. The authors in [17] investigate

the Skorohod case of (5.10), (5.11) by considering an approximate equation given by

∂uε,δt,x
∂t

=
1

2
∆uε,δt,x + u

ε,δ
t,x � Ẇε,δ

t,x , t > 0, x ∈ Rd, (5.13)

uε,δ0,x = u0(x), x ∈ Rd, (5.14)

where � denotes the Wick product, see [19, Definition 8.11.] as well as [17, Equation (2.12)], and Ẇε,δ
t,x

is given by the element with only first order chaos decomposition Ẇε,δ
t,x =

〈
wε,δt,x, ·

〉
, where wε,δt,x ∈ H is

given by

wε,δt,x(s, y) =
1

δ
1[0,δ](t− s)1[0,t](s)pε(x− y), s > 0, y ∈ Rd.

By [17, Equation (3.18)] the mild solution to the approximate equation (5.13), (5.14) is given by the

Bochner integral in Lp(N ′, µ), p ∈ [1,∞),

uε,δt,x = E
[
u0(B

x
t ) :exp

(〈
Aε,δt,Bx , ·

〉)
:
]
,

where :exp
(〈
Aε,δt,Bx , ·

〉)
: denotes the Wick exponential of Aε,δt,Bx ∈ H which is given by

Aε,δt,Bx(r, y) =
1

δ

δ∧(t−r)∫
0

pε(B
x
t−r−s − y)ds

 1[0,t](r), r ∈ R, y ∈ Rd,

and E denotes integration w.r.t. P in the sense of Bochner. Consequently, the S-transform of uε,δt,x at

ϕ ∈ NC is given by

Suε,δt,x(ϕ) = E
[
u0(B

x
t )S
(
:exp

(〈
Aε,δt,x, ·

〉)
:
)
(ϕ)
]

= E
[
u0(B

x
t ) exp

(
(Aε,δt,x, ϕ)H

)]
.

In [17, Theorem 3.6.] it is shown that the limit ut,x = lim
ε→0 lim

δ→0uε,δt,x exists for all t > 0, x ∈ Rd in

Lp(N ′, µ) for all p ∈ [1,∞) and (ut,x)t>0,x∈Rd coincides with the mild solution of (5.10), (5.11), see

also the last mentioned reference for the definition of mild solution. With this notation in mind we can

formulate our results for the Skorohod case in the following theorem.

Theorem 5.10. Let u0 : R
d −→ R be continuous and bounded and γ and Γ satisfy the Assumptions

5.8. For every t > 0, x ∈ Rd the element ut,x = lim
ε→0 lim

δ→0uε,δt,x is contained in G and for λ ∈ (0,∞) the
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Gλ-norm of ut,x can be estimated by

‖ut,x‖2λ ≤ E

u0(Bxt )u0(B̃xt ) exp

4λ2 t∫
0

t∫
0

γ(r− s)Λ(Bxr − B̃
x
s)dsdr

 , (5.15)

where E denotes integration w.r.t. P.

Proof: Let t > 0, x ∈ Rd be arbitrary and λ ∈ (0,∞). To show ut,x ∈ Gλ it suffices to show that

the norm
∥∥uε,δt,x∥∥λ is uniformly bounded in ε, δ > 0, due to the Banach-Alaoglu theorem. To this end,

we use our main result. Let us also fix ε, δ > 0 and let (ei)i∈N denote a real orthonormal basis of H

which is contained in N . For m ∈ N, we denote by Pm the projection given by Pm =
m∑
j=1

〈ej, ·〉 ej. From

Assumption 5.8 we conclude that the real random variable
∥∥Aε,δt,Bx∥∥H is bounded. Thus, we can use

Fubinis Theorem and obtain∫
S ′
C
(Rd+1)

∣∣∣Suε,δt,x(λPmη)∣∣∣2 ν(dη)

=E

u0(Bxt )u0(B̃xt ) ∫
S ′
C
(Rd+1)

exp

(
λ
〈
Pmη,A

ε,δ
t,Bx

〉
+ λ
〈
Pmη,A

ε,δ
t,B̃x

〉)

=E

u0(Bxt )u0(B̃xt ) ∫
S ′
C
(Rd+1)

exp

(
λ
〈
η, PmA

ε,δ
t,Bx

〉
+ λ
〈
η, PmA

ε,δ
t,B̃x

〉)
ν(dη)

 .
Proposition 3.1 yields ∫

S ′
C
(Rd+1)

exp

(
λ
〈
η, PmA

ε,δ
t,Bx

〉
+ λ
〈
η, PmA

ε,δ
t,B̃x

〉)
ν(dη)

= exp
(
4λ2(PmA

ε,δ
t,Bx , PmA

ε,δ
t,B̃x

)H

)
.

Observe that the random variables Xm := (PmA
ε,δ
t,Bx , PmA

ε,δ
t,B̃x

)H, m ∈ N, are uniformly bounded. Fur-

thermore, we have

Xm
m→∞−−−−→(Aε,δt,Bx , Aε,δt,B̃x)H

=

t∫
0

t∫
0

γ(r− s)
1

δ2

δ∧(t−r)∫
0

δ∧(t−s)∫
0

∫
Rd

∫
Rd

Λ(y1 − y2)pε(B
x
t−r−t1

− y1)pε(B
x
t−s−t2

− y2)dy1 dy2 dt1 dt2 drds

δ→0−−→ t∫
0

t∫
0

γ(r− s)

∫
Rd

∫
Rd

Λ(y1 − y2)pε(B
x
t−r − y1)pε(B

x
t−s − y2)dy1 dy2 drds

ε→0−−→ t∫
0

t∫
0

γ(r− s)Λ(Bt−s − B̃t−s)drds ∈ L1(Ω,P),

where the convergence takes place in L1(Ω,P), see [17, proof of Theorem 3.6.]. The dominated conver-

gence theorem implies

sup
m∈N

∫
S ′
C
(Rd+1)

∣∣∣Suε,δt,x(λPmη)∣∣∣2 ν(dη) <∞.
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From Corollary 4.3 we conclude∥∥∥uε,δt,x∥∥∥2
λ
= lim
m→∞E

[
u0(B

x
t )u0(B̃

x
t ) exp

(
4λ2Xm

)]
=E

[
u0(B

x
t )u0(B̃

x
t ) exp

(
4λ2

(
Aε,δt,Bx , A

ε,δ
t,B̃x

)
H

)]
.

From the boundedness of u0 and [17, Equation (3.27)] we eventually obtain

sup
0<ε,δ≤1

∥∥∥uε,δt,x∥∥∥
λ
<∞,

which shows ut,x ∈ Gλ. The estimate (5.15) follows from the weak lower semi-continuity of the norm. �

5.2.2 Stratonovich Case

In this part we consider the the product of Ẇt,x and ut,x in (5.10) in the sense of the Stratonovich

integral. We proceed similar as in Theorem 5.10 and use the results made in [17, Section 4]. In [17,

Section 4] a mild solution (ut,x)t>0,x∈Rd of the Stratonovich version of (5.10), (5.11) is constructed. As

in the Skorohod case we show that for all t > 0, x ∈ Rd the random variable ut,x is contained in G. We

first state additional assumption on the covariance γ and Λ, see [17, Hypothesis 4.1.], and recall some

of the results achieved in [17, Section 4].

Assumption 5.11. Let γ and Λ be given as in Assumption 5.8. Assume additionally that there exists

a constant 0 < β < 1 s.t. for any t ∈ R,

0 ≤ γ(t) ≤ Cβ |t|−β

for some constant 0 < Cβ <∞ and the measure σ satisfies∫
Rd

1

1+ |ξ|2−2β
µ(dξ) <∞.

The candidate solution (ut,x)t>0,x∈Rd of (5.10), (5.11) for the Stratonovich case is given as a limit of

approximations (uε,δt,x)t>0,x∈Rd where ε, δ > 0 are cut off parameters and tend to zero. The convergence

takes place in Lp(N ′, µ) for every p ∈ [1,∞) and uniformly in t > 0, x ∈ Rd, see [17, Proposition 4.7.].

The approximations (uε,δt,x)t>0,x∈Rd are given as a Bochner integral in Lp(N ′, µ), p ∈ [1,∞) as above,

see [17, Equation (4.15)]. Indeed, for t > 0 and x ∈ Rd uε,δt,x is given as

uε,δt,x =E
[
u0(B

x
t ) exp

(
Aε,δt,Bx

)]
=E

[
u0(B

x
t ) exp

(
1

2

∥∥∥Aε,δt,Bx∥∥∥2H
)

:exp
(〈
Aε,δt,Bx , ·

〉)
:

]
.

Now we can formulate our result regarding the process (ut,x)t>0,x∈Rd .

Theorem 5.12. Let u0 : R
d −→ R be continuous and bounded and γ and Γ satisfy the Assumptions

5.11. For every t > 0, x ∈ Rd the element ut,x = lim
ε→0 lim

δ→0uε,δt,x is contained in G and for λ ∈ (0,∞) the

Gλ-norm of ut,x can be estimated by

‖ut,x‖2λ ≤ E

[
u0(B

x
t )u0(B̃

x
t ) exp

1
2

 t∫
0

t∫
0

γ(r− s)Λ(Bxr − B
x
s)dsdr+

t∫
0

t∫
0

γ(r− s)Λ(B̃xr − B̃
x
s)dsdr


× exp

4λ2 t∫
0

t∫
0

γ(r− s)Λ(Bxr − B̃
x
s)dsdr

],



24 6 Outlook: Application to stochastic currents

where E denotes integration w.r.t. P.

Proof: We show this results as in the proof of Theorem 5.10. Indeed, the same arguments as above

lead to the fact that for every ε, δ, λ, t > 0 and x ∈ Rd the Gλ-norm of uε,δt,x is given by∥∥∥uε,δt,x∥∥∥2
λ
= E

[
u0(B

x
t )u0(B̃

x
t ) exp

(
1

2

(∥∥∥Aε,δt,Bx∥∥∥2H +
∥∥∥Aε,δ

t,B̃x

∥∥∥2
H

)
+ 4λ2

(
Aε,δt,Bx , A

ε,δ
t,B̃x

)
H

)]
.

Using [17, Equation (4.17) ff.] we conclude that

sup
0<ε,δ≤1

∥∥∥uε,δt,x∥∥∥
λ
<∞,

implying that ut,x ∈ Gλ for all λ ∈ (0,∞). The last part of the statement follows by the same argument

as in 5.10 and [17, Equation (4.6)]. �

Remark 5.13. We want to point out that the results of Theorem 5.10 and Theorem 5.12 give some

additional insight into the solution of the stochastic heat equation (5.10), (5.11) for the Skorohod and

Stratonovich case. In particular, in both cases the random variable ut,x, t > 0, x ∈ Rd, is contained

in G. This implies that ut,x is infinitely often Malliavin differentiable and the derivatives of arbitrary

order are integrable of order p, where p ∈ [1,∞) can be arbitrarily large, see [25]. As far as the authors

know, this has not been shown for this general class of covariances.

6 Outlook: Application to stochastic currents

The concept of current is fundamental in geometric measure theory. The simplest version of current is

given by the functional

ϕ 7→ T∫
0

(
ϕ(γ(t)), γ ′(t)

)
Rd dt, 0 < T <∞,

where ϕ : Rd → Rd, d ∈ N, and γ : [0, T ] → Rd is a rectifiable curve. Its vector valued integral kernel

informally is given by

ζ(x) =

T∫
0

δ(x− γ(t))γ ′(t)dt, x ∈ Rd,

where δ is the Dirac delta. The interested reader may find comprehensive account on the subject in

the books [7, 21].

A stochastic analog of the current ζ arises if we replace the deterministic curve γ for example by the

trajectory of a Brownian motion (B(t))0≤t≤T taking values in Rd. In this way, we obtain the following

functional

ξ(x) :=

T∫
0

δ(x− B(t))dB(t), x ∈ Rd. (6.1)

In the forthcoming manuscript [5] a rigorous definition of (6.1) is given. Using Wick products the

stochastic integral w.r.t. Rd-valued Brownian motions can be defined in the space of Hida distributions.

Then our improved characterization of G′ is applied to analyze the regularity of ξ(x), x ∈ Rd.

There have been some other approaches to study stochastic current, such as Malliavin calculus and

stochastic integrals via regularization, see [8, 9, 10, 13], among others. In [9] ξ was constructed in a

negative Sobolev space, i.e., in a generalized function space in the variable x ∈ Rd. Then the constructed
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distribution was applied to a model of random vortex filaments in turbulent fluids. The construction

in [5] gives for the same object a rigorous definition pointwise in x ∈ Rd \ {0}.
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