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e Let (Y;) be an Sp-valued process that satisfies the following
SPDE in Sp_1:

t t
Y, = Yo+/L(s,w)vsds+/A,(s,w)vsdB;',
0 0

where Yy € S, is deterministic and (L(s,w)Y5s), (Ai(s,w)Ys) are
jointly measurable, adapted processes

L(s,w)p = 22 o(s,w)o(s,w);;0 ng Zb (s,w)0i¢p,

Ai(s,w)p = —foji (s,w)0e,

where (0ji(s,w)) and (b;(s,w)) are locally bounded adapted
processes. We will assume that (Y;(w)) is a continuous
(FB)-adapted process which is S,-valued.
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e Note that
2

t
/||A s,w)Ys(W)[2_qds < C/ > aji(s,w)| [ Ysll5ds
Jj

< oo, Vit as.

e Hence the stochastic integral

t

/A,-(s,w)Ys dB!

0
is a continuous adapted process in Sp_1. Similarly

t

/ L(s,w)Ysds

0

is a continuous adapted process in Sp_1.
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Theorem
Let Zy := (Z},...,Z8) and (0j(s,w)), (b'(s,w)) are jointly

measurable adapted processes

t t

Z! ::/a,-j(s,w)dsgﬁr/b’(s,w)ds.

0 0

Then y@ ZZTZth.

Proof. We will show that if (Y}) and (Y?) are two Sp-valued
solutions of our SPDE with coefficients (L(s,w)) and (A(s,w))
with Y& = Y& = Yp as., then Y} = Y2 V¥ t > 0 almost surely i.e.
pathwise uniqueness holds for our SPDE.
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proof continued.
On the other hand, by Ité's formula

t

t
1 o
77z.Y0 = Yo—/a'(TZsYO)dZSI—F22/85(TZSY0)C,<Z',ZJ>5
i
t

~ v+ / Ai(s, ) (2. Yo)dB] + / L(s,w)(r2. Yo)ds,
0 0

where 2nd equality follows from the definition of Z; and the fact
that

(Z', 20y, = /(Oat);j(s,w)ds.
0

Hence, Y: = 77 Yo is a solution of the SPDE.

O
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Lemma (Lemma 1)

Let (Y}) and (Y?) be two Sy-valued solutions of our SPDE with
coefficients (L(s,w)) and (Ai(s,w)) satisfying Y = YZ = Y,.
Then

t

Ivi- YR, = [ {2 (V- YA LsL - ),

0
+ZHA s,w) Y2)|12_ }ds—irl\/lt

where (M) is a continuous local martingale.

Proof. Let {hxp—1} be an ONB in Sp_;1. Let
YE = (Y} = Y2 hep-1)p-1 and Y;:= Y} — Y2

IYE = Y212y =S (Y = Y2 hipo1)2y = > (V)

k k
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Proof continued. Note that (Y/[) is a continuous real semi

martingale
t t

vk :/<A;(s,w)Ys,hk7p_1)p1dB;+/<L(s,w)Ys,hk7p_1>p1ds
0 0

Hence

Yidyk 4+ (vky,

—~
":1
N—r

N
I
N
o —_

= 2/Y5k (5,w)Ys, hgp—1)p-1dBL

t
+2/Ysk $,w)Ys, h p_1)p-1ds

t
+Z/ Sst,hkp 1>p ldS
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Proof continued. Thus,

dYEP = 2 / > YE(Ai(s,w) Ye, hp1) p-1dBL
0 k

Note that

Zyk (5,w) Yo, Mk p1)p1

= Z(Ys - Ys ’ hk7P*1>P—1<Ai(57w)(Ysl - Y52)7 hk,P*1>P—1

k
= <Ysl - Ysszi(svw)(Ysl - Y52)>P—1
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Proof continued.
Similarly

Z Yk S w Ys,hkp 1>p 1— <Y51 - Y527 L(va)(ysl - Ys2)>P_17

and

ZZ (5,0) Ve, hp1)2 1—ZHA 5,w)(Ys = Yo
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Adjoint operator

Theorem (adjoint operator)

Fix p € R. Then for each 1 < i < d, there exists a bounded linear
operator T; : S, — Sp such that

<¢a 8;¢>p + <aiwa ¢>P = <TI¢7 ¢>P
for every v, ¢ € S. Further

[(Tiv, 0j9)p| < C - [[¥lpll ol
for every ¥, ¢ € S.
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Monotonicity inequality

Let oy, by € R and let
1
Lo = 22(00 050 — Zbaqs,
:g::ojl j¢

Corollary
Let p € S,. Then

2(o, L¢>p71+ZHAi¢H =G maX{IU |, 1bil} llgll5-
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Proof.

Suffices to prove for ¢ € S, since 0; : S, — Sp—1 are continuous.
For ¢ € S the LHS in the statement

= 20095 {{6,050)p-1 + (09, 0j)p-1}
+Z bi(¢, Di)p—1
= Z(aaf)w-qx 8;6)p—1

+Zb (T, d)p
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e Uniqueness proof. Let Y2 := Y} — Y2 €S,. Let T be a
stopping time s.t. E Mix- = 0, where M is the continuous local
martingale of earlier Lemma 1, and V w

sup max{]a s,w)| + |bi(s,w)|} < o0.

s<t

Then from Lemma 1, taking Expectations,

E | Yorlpa

tAT
_ E/ {2<Y5°,L(s,w)vso>,,1+Z|!A;(s,w)Ys°||§_1}ds
0 i
t
< / B V2,13 ds.
0

Hence using Gronwall’s lemma, E||Yt0/\T|| _;=0. Hence Y} = YZ2.
This completes the proof of the theorem that Ye = 72, Y0. ]
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e Proof of the theorem for adjoint operator:

(¥, 0i0)p + (0i), 9)p = (Tih, &) p.

Using the expansion, for ¢,¢ € S

¢ = Z ¢nhn7 1/1 - Zdjnhnv

i = qun{\/»ne, \/"’+1n+e,},

where hp_e, = hp, ... hp—1... hny,n=(n1,...,ng).

and
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Using the definition of the inner product (-,-), we can calculate the
LHS of above as

(¥, 0i0)p + (01, d)p = (¥, (AU + BiU")o)p

where the linear operators A;, B, U, U,Jr are given as

U,iqp = an:te,-hn
Ay = Y anithnhn
By = Y bnithnhn

where,
e T {(2Inl +d—2)* — (2)n +d)2p]
MV 2 (2[n] + d)?P 7
YR [ LER seSCLED R
e 2 (2|n] + d)?P ’
and n=(n,...,nq),|n| :=nm+...4+ ng.
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Lemma
We have |ap i| + |bp,i| < \/—’\% for some M >0 and all nj, 1 < i <d.
In particular A;, B; are bounded linear operators.

Proof.
ani = /Bf(5) where

Note that f is analytic in a neighbourhood containing 0 if we
choose an analytic branch of z — z%P in a domain containing an
neighbourhood of origin. Also note that £(0) = 0 and in the
neighbourhood of 0, f(z) = z{(z), where ( is an analytic function
in that neighbourhood. Finally we take T; := A;U.” + B;U,.Jr.

L]

Remark :
87 =—0;+ T;.
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e We return to the linear SPDE with random coefficients:
t t
Y, = Yo—|—/L(s,w)sts+/A;(s,w)Y5 dB!

0 0
= 72 Y0,

with
t

t
Z = / o(s,w) - dBs + / b(s, w)ds
0

If we take Yo = dx and define oji(s, w) := 7;( X (w)),
bi(s,w) := bi(XX(w)), where &;;, b; are the coefficients of the
following SDE —

dX} = &(X})-dB; + b(XX)dt
X =

then Z; = Z' and Y; A,TZX5X4476XX
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e Note that L(s,w)Ys = L(Ys), where L(y) is the non-linear
diffusion operator. Similarly A;(s,w)Ys = Ai(Ys).

Uniqueness of the non-linear SPDE:

t t

Y, = Y0+/L(Ys)ds+/A,-(Ys)dB;
0 0

oii(f) = (5, f), bi(f) = (b, f), for f €S_p, p > %.
e Suppose (Y})and (Y?2) are two solutions in S_,.

o Let J;J‘-(s,w) = 0;(YX(w)), b¥(s,w) := bi(YX(w)), for k = 1,2.
and let L*(s,w), AX(s,w) be the random differential operators with
coefficients o5(s,w) and bf(s,w), for k = 1,2. (L*(s,w) YY),
(Ak(s,w)Yk) are jointly measurable, F2- adapted processes.
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e Then, for k=1,2

t

t
YE = Yo+ / LK(s,w)YE ds + / Ak(s,w) Yk dBI
0

0
— thk Yo
where
t t
zZK :/ag(s,w) ng+/b,4<(s,w) ds.
0 0

e Now let Yo = 4. Then
of(s,w) = oj(YEW)) = 0j(6,s 26) = (Fijs 6y 76)
= Gji(x+ Z¥) = 3;(X"),

where X;** := x + ZF_ In particular
t t
XKk=x+2F=x+ /a(xsk) - dBs +/E(Xsk)ds.
0 0
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e Thus we have the following theorem—

Theorem
Let Yy = Ox, then pathwise uniqueness of finite dimensional SDE
holds iff pathwise uniqueness of non-linear SPDE holds.

Remark :
Uniqueness extends to the case Yy = 7if, for f € S_,, arbitrary.
Now we should have

ojj(s,w) = 0(Ys(w)) = (@7, Ys(w))
= <5,’j,7‘zs(7'xf)> etc.
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