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• Let (Yt) be an Sp-valued process that satisfies the following
SPDE in Sp−1:

Yt = Y0 +

t∫
0

L(s, ω)Ysds +

t∫
0

Ai (s, ω)YsdB
i
s ,

where Y0 ∈ Sp is deterministic and (L(s, ω)Ys), (Ai (s, ω)Ys) are
jointly measurable, adapted processes

L(s, ω)ϕ =
1
2

∑
ij

(σ(s, ω)σt(s, ω)ij∂
2
ijϕ−

∑
i

bi (s, ω)∂iϕ,

Ai (s, ω)ϕ = −
∑
j

σji (s, ω)∂jϕ,

where (σij(s, ω)) and (bi (s, ω)) are locally bounded adapted
processes. We will assume that (Yt(ω)) is a continuous
(FB

t )-adapted process which is Sp-valued.
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• Note that

t∫
0

‖Ai (s, ω)Ys(ω)‖2p−1ds ≤ C

t∫
0

∣∣∣∣∣∣
∑
j

σji (s, ω)

∣∣∣∣∣∣
2

‖Ys‖2pds

< ∞, ∀ t a.s.

• Hence the stochastic integral

t∫
0

Ai (s, ω)Ys dB
i
s

is a continuous adapted process in Sp−1. Similarly

t∫
0

L(s, ω)Ys ds

is a continuous adapted process in Sp−1.
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Theorem
Let Zt := (Z 1

t , . . . ,Z
d
t ) and (σij(s, ω)), (bi (s, ω)) are jointly

measurable adapted processes

Z i
t :=

t∫
0

σij(s, ω)dB i
s +

t∫
0

bi (s, ω)ds.

Then Yt = τZtY0.

Proof. We will show that if (Y 1
t ) and (Y 2

t ) are two Sp-valued
solutions of our SPDE with coefficients (L(s, ω)) and (A(s, ω))
with Y 1

0 = Y 2
0 = Y0 a.s., then Y 1

t = Y 2
t ∀ t ≥ 0 almost surely i.e.

pathwise uniqueness holds for our SPDE.
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proof continued.
On the other hand, by Itô’s formula

τZtY0 = Y0 −
t∫

0

∂i (τZsY0)dZ i
s +

1
2

∑
ij

t∫
0

∂2
ij(τZsY0)d〈Z i ,Z j〉s

= Y0 +

t∫
0

Ai (s, ω)(τZsY0)dB i
s +

t∫
0

L(s, ω)(τZsY0)ds,

where 2nd equality follows from the definition of Zt and the fact
that

〈Z i ,Z j〉t =

t∫
0

(σσt)ij(s, ω)ds.

Hence, Yt = τZtY0 is a solution of the SPDE.
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Lemma (Lemma 1)
Let (Y 1

t ) and (Y 2
t ) be two Sp-valued solutions of our SPDE with

coefficients (L(s, ω)) and (Ai (s, ω)) satisfying Y 1
0 = Y 2

0 = Y0.
Then

‖Y 1
t − Y 2

t ‖2p−1 =

t∫
0

{
2
〈
Y 1
s − Y 2

s , L(s, ω)(Y 1
s − Y 2

s )
〉
p−1

+
∑
i

‖Ai (s, ω)(Y 1
s − Y 2

s )‖2p−1

}
ds + Mt

where (Mt) is a continuous local martingale.
Proof. Let {hk,p−1} be an ONB in Sp−1. Let
Y k
t := 〈Y 1

t − Y 2
t , hk,p−1〉p−1 and Yt := Y 1

t − Y 2
t .

‖Y 1
t − Y 2

t ‖2p−1 =
∑
k

〈Y 1
t − Y 2

t , hk,p−1〉2p−1 =
∑
k

(Y k
t )2
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Proof continued. Note that (Y k
t ) is a continuous real semi

martingale

Y k
t =

t∫
0

〈Ai (s, ω)Ys , hk,p−1〉p−1dB
i
s +

t∫
0

〈L(s, ω)Ys , hk,p−1〉p−1ds

Hence

(Y k
t )2 = 2

t∫
0

Y k
s dY k

s + 〈Y k〉t

= 2

t∫
0

Y k
s 〈Ai (s, ω)Ys , hk,p−1〉p−1dB

i
s

+2

t∫
0

Y k
s 〈L(s, ω)Ys , hk,p−1〉p−1ds

+
∑
i

t∫
0

〈Ai (s, ω)Ys , hk,p−1〉2p−1ds.
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Proof continued. Thus,

∑
k

(Y k
t )2 = 2

t∫
0

∑
k

Y k
s 〈Ai (s, ω)Ys , hk,p−1〉p−1dB

i
s

+2

t∫
0

∑
k

Y k
s 〈L(s, ω)Ys , hk,p−1〉p−1ds

+

t∫
0

∑
i

∑
k

〈Ai (s, ω)Ys , hk,p−1〉2p−1ds.

Note that∑
k

Y k
s 〈Ai (s, ω)Ys , hk,p−1〉p−1

=
∑
k

〈Y 1
s − Y 2

s , hk,p−1〉p−1〈Ai (s, ω)(Y 1
s − Y 2

s ), hk,p−1〉p−1

= 〈Y 1
s − Y 2

s ,Ai (s, ω)(Y 1
s − Y 2

s )〉p−1.
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Proof continued.
Similarly∑
k

Y k
s 〈L(s, ω)Ys , hk,p−1〉p−1 = 〈Y 1

s − Y 2
s , L(s, ω)(Y 1

s − Y 2
s )〉p−1,

and∑
i

∑
k

〈Ai (s, ω)Ys , hk,p−1〉2p−1 =
∑
i

‖Ai (s, ω)(Y 1
s − Y 2

s )‖2p−1.
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Adjoint operator

Theorem (adjoint operator)
Fix p ∈ R. Then for each 1 ≤ i ≤ d , there exists a bounded linear
operator Ti : Sp → Sp such that

〈ψ, ∂iφ〉p + 〈∂iψ, φ〉p = 〈Tiψ, φ〉p

for every ψ, φ ∈ S. Further

|〈Tiψ, ∂jφ〉p| ≤ C · ‖ψ‖p‖φ‖p

for every ψ, φ ∈ S.
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Monotonicity inequality

Let σij , bi ∈ R and let

Lφ :=
1
2

∑
i ,j

(σσt)ij∂
2
ijφ−

∑
i

bi∂iφ,

Aiφ := −
∑
j

σji∂jφ.

Corollary
Let φ ∈ Sp. Then

2〈φ, Lφ〉p−1 +
∑
i

‖Aiφ‖2p−1 ≤ C ·max
i ,j
{|σ2

ij |, |bi |} ‖φ‖2p−1
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Proof.
Suffices to prove for φ ∈ S, since ∂i : Sp → Sp−1 are continuous.
For φ ∈ S the LHS in the statement

=
∑
ij

(σσt)ij
{
〈φ, ∂2

ijφ〉p−1 + 〈∂iφ, ∂jφ〉p−1
}

+
∑
i

bi 〈φ, ∂iφ〉p−1

=
∑
ij

(σσt)ij〈Tiφ, ∂jφ〉p−1

+
∑
i

bi
1
2
〈Tiφ, φ〉p−1.
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• Uniqueness proof. Let Y 0
t := Y 1

t − Y 2
t ∈ Sp. Let τ be a

stopping time s.t. EMt∧τ = 0, where M is the continuous local
martingale of earlier Lemma 1, and ∀ ω

sup
s≤τ

max
i ,j

{
|σ2

ij(s, ω)|+ |bi (s, ω)|
}
<∞.

Then from Lemma 1, taking Expectations,

E ‖Y 0
t∧τ‖2p−1

= E
t∧τ∫
0

{
2〈Y 0

s , L(s, ω)Y 0
s 〉p−1 +

∑
i

‖Ai (s, ω)Y 0
s ‖2p−1

}
ds

≤ K

t∫
0

E‖Y 0
s∧τ‖2p−1ds.

Hence using Gronwall’s lemma, E‖Y 0
t∧τ‖2p−1 = 0. Hence Y 1

t ≡ Y 2
t .

This completes the proof of the theorem that Yt = τZtY0. 2
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• Proof of the theorem for adjoint operator:

〈ψ, ∂iφ〉p + 〈∂iψ, φ〉p = 〈Tiψ, φ〉p.

Using the expansion, for φ, ψ ∈ S

φ =
∑
n

φnhn, ψ =
∑
n

ψnhn,

and

∂iφ =
∑
n

φn

{√
ni
2
hn−ei −

√
ni + 1

2
hn+ei

}
,

where hn−ei = hn1 . . . hni−1 . . . hnd , n = (n1, . . . , nd).
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Using the definition of the inner product 〈·, ·〉p we can calculate the
LHS of above as

〈ψ, ∂iφ〉p + 〈∂iψ, φ〉p = 〈ψ, (AiU
−
i + BiU

+
i )φ〉p

where the linear operators Ai ,Bi ,U
−
i ,U

+
i are given as

U±i ψ =
∑
n

ψn±eihn

Aiψ =
∑
n

an,iψnhn

Biψ =
∑
n

bn,iψnhn

where,

an,i :=

√
ni
2

[
(2|n|+ d − 2)2p − (2|n|+ d)2p

(2|n|+ d)2p

]
,

bn,i :=

√
ni + 1

2

[
(2|n|+ d)2p − (2(|n|+ 1) + d)2p

(2|n|+ d)2p

]
,

and n = (n1, . . . , nd), |n| := n1 + . . .+ nd .
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Lemma
We have |an,i |+ |bn,i | ≤ M√

ni
for some M > 0 and all ni , 1 ≤ i ≤ d .

In particular Ai ,Bi are bounded linear operators.

Proof.
an,i =

√
ni
2 f ( 1

ni
) where

f (z) :=

(
2 + α(n, i)z

2 + β(n, i)z

)2p

− 1.

Note that f is analytic in a neighbourhood containing 0 if we
choose an analytic branch of z → z2p in a domain containing an
neighbourhood of origin. Also note that f (0) = 0 and in the
neighbourhood of 0, f (z) = zζ(z), where ζ is an analytic function
in that neighbourhood. Finally we take Ti := AiU

−
i + BiU

+
i .

Remark :
∂∗i = −∂i + Ti .
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• We return to the linear SPDE with random coefficients:

Yt = Y0 +

t∫
0

L(s, ω)Ysds +

t∫
0

Ai (s, ω)Ys dB
i
s

= τZtY0,

with

Zt =

t∫
0

σ(s, ω) · dBs +

t∫
0

b(s, ω)ds.

If we take Y0 = δx and define σij(s, ω) := σ̄ij(X
x
s (ω)),

bi (s, ω) := b̄i (X
x
s (ω)), where σ̄ij , b̄i are the coefficients of the

following SDE –

dX x
t = σ̄(X x

t ) · dBt + b̄(X x
t )dt

X x
0 = x

then Zt ≡ Z x
t and Yt = τZ x

t
δx = δX x

t
.
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• Note that L(s, ω)Ys = L(Ys), where L(ϕ) is the non-linear
diffusion operator. Similarly Ai (s, ω)Ys = Ai (Ys).

Uniqueness of the non-linear SPDE:

Yt = Y0 +

t∫
0

L(Ys)ds +

t∫
0

Ai (Ys) dB i
s

σij(f ) = 〈σ̄ij , f 〉, bi (f ) = 〈b̄i , f 〉, for f ∈ S−p, p > d
4 .

• Suppose (Y 1
t )and (Y 2

t ) are two solutions in S−p.

• Let σkij (s, ω) := σij(Y
k
s (ω)), bki (s, ω) := bi (Y

k
s (ω)), for k = 1, 2.

and let Lk(s, ω), Ak
i (s, ω) be the random differential operators with

coefficients σkij (s, ω) and bki (s, ω), for k = 1, 2. (Lk(s, ω)Y k
s ),

(Ak
i (s, ω)Y k

s ) are jointly measurable, FB
s - adapted processes.
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• Then, for k = 1, 2

Y k
t = Y0 +

t∫
0

Lk(s, ω)Y k
s ds +

t∫
0

Ak
i (s, ω)Y k

s dB i
s

= τZ k
t
Y0

where

Z k,i
t =

t∫
0

σkij (s, ω) dB j
s +

t∫
0

bki (s, ω) ds.

• Now let Y0 = δx . Then

σkij (s, ω) = σij(Y
k
s (ω)) = σij(δx+Z k

s
) = 〈σ̄ij , δx+Z k

s
〉

= σ̄ij(x + Z k
s ) = σ̄ij(X

x ,k
s ),

where X x ,k
t := x + Z k

t . In particular

X k
t = x + Z k

t = x +

t∫
0

σ̄(X k
s ) · dBs +

t∫
0

b̄(X k
s )ds.
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• Thus we have the following theorem–

Theorem
Let Y0 = δx , then pathwise uniqueness of finite dimensional SDE
holds iff pathwise uniqueness of non-linear SPDE holds.

Remark :
Uniqueness extends to the case Y0 = τx f , for f ∈ S−p arbitrary.
Now we should have

σij(s, ω) = σij(Ys(ω)) = 〈σ̄ij ,Ys(ω)〉
= 〈σ̄ij , τZs (τx f )〉 etc.
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