The Monotonicity inequality and Uniqueness

B. Rajeev
(Indian Statistical Institute, Bangalore Centre, India)

Lecture 3

- Let $\left(Y_{t}\right)$ be an \mathcal{S}_{p}-valued process that satisfies the following SPDE in \mathcal{S}_{p-1} :

$$
Y_{t}=Y_{0}+\int_{0}^{t} L(s, \omega) Y_{s} d s+\int_{0}^{t} A_{i}(s, \omega) Y_{s} d B_{s}^{i}
$$

where $Y_{0} \in \mathcal{S}_{p}$ is deterministic and $\left(L(s, \omega) Y_{s}\right),\left(A_{i}(s, \omega) Y_{s}\right)$ are jointly measurable, adapted processes

$$
\begin{aligned}
L(s, \omega) \varphi & =\frac{1}{2} \sum_{i j}\left(\sigma(s, \omega) \sigma^{t}(s, \omega)_{i j} \partial_{i j}^{2} \varphi-\sum_{i} b_{i}(s, \omega) \partial_{i} \varphi\right. \\
A_{i}(s, \omega) \varphi & =-\sum_{j} \sigma_{j i}(s, \omega) \partial_{j} \varphi
\end{aligned}
$$

where $\left(\sigma_{i j}(s, \omega)\right)$ and $\left(b_{i}(s, \omega)\right)$ are locally bounded adapted processes. We will assume that $\left(Y_{t}(\omega)\right)$ is a continuous $\left(\mathcal{F}_{t}^{B}\right)$-adapted process which is \mathcal{S}_{p}-valued.

- Note that

$$
\int_{0}^{t}\left\|A_{i}(s, \omega) Y_{s}(\omega)\right\|_{p-1}^{2} d s \leq C \int_{0}^{t}\left|\sum_{j} \sigma_{j i}(s, \omega)\right|^{2}\left\|Y_{s}\right\|_{p}^{2} d s
$$

- Hence the stochastic integral

$$
\int_{0}^{t} A_{i}(s, \omega) Y_{s} d B_{s}^{i}
$$

is a continuous adapted process in \mathcal{S}_{p-1}. Similarly

$$
\int_{0}^{t} L(s, \omega) Y_{s} d s
$$

is a continuous adapted process in \mathcal{S}_{p-1}.

Theorem
Let $Z_{t}:=\left(Z_{t}^{1}, \ldots, Z_{t}^{d}\right)$ and $\left(\sigma_{i j}(s, \omega)\right),\left(b^{i}(s, \omega)\right)$ are jointly measurable adapted processes

$$
Z_{t}^{i}:=\int_{0}^{t} \sigma_{i j}(s, \omega) d B_{s}^{i}+\int_{0}^{t} b^{i}(s, \omega) d s
$$

Then $Y_{t}=\tau_{Z_{t}} Y_{0}$.

Proof. We will show that if $\left(Y_{t}^{1}\right)$ and $\left(Y_{t}^{2}\right)$ are two \mathcal{S}_{p}-valued solutions of our SPDE with coefficients $(L(s, \omega))$ and $(A(s, \omega))$ with $Y_{0}^{1}=Y_{0}^{2}=Y_{0}$ a.s., then $Y_{t}^{1}=Y_{t}^{2} \forall t \geq 0$ almost surely i.e. pathwise uniqueness holds for our SPDE.

proof continued.

On the other hand, by Itô's formula

$$
\begin{aligned}
\tau_{Z_{t}} Y_{0} & =Y_{0}-\int_{0}^{t} \partial_{i}\left(\tau_{Z_{s}} Y_{0}\right) d Z_{s}^{i}+\frac{1}{2} \sum_{i j} \int_{0}^{t} \partial_{i j}^{2}\left(\tau_{Z_{s}} Y_{0}\right) d\left\langle Z^{i}, Z^{j}\right\rangle_{s} \\
& =Y_{0}+\int_{0}^{t} A_{i}(s, \omega)\left(\tau_{Z_{s}} Y_{0}\right) d B_{s}^{i}+\int_{0}^{t} L(s, \omega)\left(\tau_{Z_{s}} Y_{0}\right) d s
\end{aligned}
$$

where 2nd equality follows from the definition of Z_{t} and the fact that

$$
\left\langle Z^{i}, Z^{j}\right\rangle_{t}=\int_{0}^{t}\left(\sigma \sigma^{t}\right)_{i j}(s, \omega) d s
$$

Hence, $Y_{t}=\tau_{Z_{t}} Y_{0}$ is a solution of the SPDE.

Lemma (Lemma 1)

Let $\left(Y_{t}^{1}\right)$ and $\left(Y_{t}^{2}\right)$ be two \mathcal{S}_{p}-valued solutions of our SPDE with coefficients $(L(s, \omega))$ and $\left(A_{i}(s, \omega)\right)$ satisfying $Y_{0}^{1}=Y_{0}^{2}=Y_{0}$. Then

$$
\begin{aligned}
\left\|Y_{t}^{1}-Y_{t}^{2}\right\|_{\rho-1}^{2}= & \int_{0}^{t}\left\{2\left\langle Y_{s}^{1}-Y_{s}^{2}, L(s, \omega)\left(Y_{s}^{1}-Y_{s}^{2}\right)\right\rangle_{p-1}\right. \\
& \left.+\sum_{i}\left\|A_{i}(s, \omega)\left(Y_{s}^{1}-Y_{s}^{2}\right)\right\|_{\rho-1}^{2}\right\} d s+M_{t}
\end{aligned}
$$

where $\left(M_{t}\right)$ is a continuous local martingale.
Proof. Let $\left\{h_{k, p-1}\right\}$ be an ONB in \mathcal{S}_{p-1}. Let $Y_{t}^{k}:=\left\langle Y_{t}^{1}-Y_{t}^{2}, h_{k, p-1}\right\rangle_{p-1}$ and $Y_{t}:=Y_{t}^{1}-Y_{t}^{2}$.

$$
\left\|Y_{t}^{1}-Y_{t}^{2}\right\|_{p-1}^{2}=\sum_{k}\left\langle Y_{t}^{1}-Y_{t}^{2}, h_{k, p-1}\right\rangle_{p-1}^{2}=\sum_{k}\left(Y_{t}^{k}\right)^{2}
$$

Proof continued. Note that $\left(Y_{t}^{k}\right)$ is a continuous real semi martingale

$$
Y_{t}^{k}=\int_{0}^{t}\left\langle A_{i}(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1} d B_{s}^{i}+\int_{0}^{t}\left\langle L(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1} d s
$$

Hence

$$
\begin{aligned}
\left(Y_{t}^{k}\right)^{2}= & 2 \int_{0}^{t} Y_{s}^{k} d Y_{s}^{k}+\left\langle Y^{k}\right\rangle_{t} \\
= & 2 \int_{0}^{t} Y_{s}^{k}\left\langle A_{i}(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1} d B_{s}^{i} \\
& +2 \int_{0}^{t} Y_{s}^{k}\left\langle L(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1} d s \\
& +\sum_{i} \int_{0}^{t}\left\langle A_{i}(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1}^{2} d s
\end{aligned}
$$

Proof continued. Thus,

$$
\begin{aligned}
\sum_{k}\left(Y_{t}^{k}\right)^{2}= & 2 \int_{0}^{t} \sum_{k} Y_{s}^{k}\left\langle A_{i}(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1} d B_{s}^{i} \\
& +2 \int_{0}^{t} \sum_{k} Y_{s}^{k}\left\langle L(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1} d s \\
& +\int_{0}^{t} \sum_{i} \sum_{k}\left\langle A_{i}(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1}^{2} d s
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \sum_{k} Y_{s}^{k}\left\langle A_{i}(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1} \\
= & \sum_{k}\left\langle Y_{s}^{1}-Y_{s}^{2}, h_{k, p-1}\right\rangle_{p-1}\left\langle A_{i}(s, \omega)\left(Y_{s}^{1}-Y_{s}^{2}\right), h_{k, p-1}\right\rangle_{p-1} \\
= & \left\langle Y_{s}^{1}-Y_{s}^{2}, A_{i}(s, \omega)\left(Y_{s}^{1}-Y_{s}^{2}\right)\right\rangle_{p-1} .
\end{aligned}
$$

Proof continued.
Similarly
$\sum_{k} Y_{s}^{k}\left\langle L(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1}=\left\langle Y_{s}^{1}-Y_{s}^{2}, L(s, \omega)\left(Y_{s}^{1}-Y_{s}^{2}\right)\right\rangle_{p-1}$,
and

$$
\sum_{i} \sum_{k}\left\langle A_{i}(s, \omega) Y_{s}, h_{k, p-1}\right\rangle_{p-1}^{2}=\sum_{i}\left\|A_{i}(s, \omega)\left(Y_{s}^{1}-Y_{s}^{2}\right)\right\|_{p-1}^{2}
$$

Adjoint operator

Theorem (adjoint operator)
Fix $p \in \mathbb{R}$. Then for each $1 \leq i \leq d$, there exists a bounded linear operator $T_{i}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p}$ such that

$$
\left\langle\psi, \partial_{i} \phi\right\rangle_{p}+\left\langle\partial_{i} \psi, \phi\right\rangle_{p}=\left\langle T_{i} \psi, \phi\right\rangle_{p}
$$

for every $\psi, \phi \in \mathcal{S}$. Further

$$
\left|\left\langle T_{i} \psi, \partial_{j} \phi\right\rangle_{p}\right| \leq C \cdot\|\psi\|_{p}\|\phi\|_{p}
$$

for every $\psi, \phi \in \mathcal{S}$.

Monotonicity inequality

Let $\sigma_{i j}, b_{i} \in \mathbb{R}$ and let

$$
\begin{aligned}
L \phi & :=\frac{1}{2} \sum_{i, j}\left(\sigma \sigma^{t}\right)_{i j} \partial_{i j}^{2} \phi-\sum_{i} b_{i} \partial_{i} \phi \\
A_{i} \phi & :=-\sum_{j} \sigma_{j i} \partial_{j} \phi
\end{aligned}
$$

Corollary
Let $\phi \in \mathcal{S}_{p}$. Then

$$
2\langle\phi, L \phi\rangle_{p-1}+\sum_{i}\left\|A_{i} \phi\right\|_{p-1}^{2} \leq C \cdot \max _{i, j}\left\{\left|\sigma_{i j}^{2}\right|,\left|b_{i}\right|\right\}\|\phi\|_{p-1}^{2}
$$

Proof.

Suffices to prove for $\phi \in \mathcal{S}$, since $\partial_{i}: \mathcal{S}_{p} \rightarrow \mathcal{S}_{p-1}$ are continuous.
For $\phi \in \mathcal{S}$ the LHS in the statement

$$
\begin{aligned}
= & \sum_{i j}\left(\sigma \sigma^{t}\right)_{i j}\left\{\left\langle\phi, \partial_{i j}^{2} \phi\right\rangle_{p-1}+\left\langle\partial_{i} \phi, \partial_{j} \phi\right\rangle_{p-1}\right\} \\
& +\sum_{i} b_{i}\left\langle\phi, \partial_{i} \phi\right\rangle_{p-1} \\
= & \sum_{i j}\left(\sigma \sigma^{t}\right)_{i j}\left\langle T_{i} \phi, \partial_{j} \phi\right\rangle_{p-1} \\
& +\sum_{i} b_{i} \frac{1}{2}\left\langle T_{i} \phi, \phi\right\rangle_{p-1} .
\end{aligned}
$$

- Uniqueness proof. Let $Y_{t}^{0}:=Y_{t}^{1}-Y_{t}^{2} \in \mathcal{S}_{p}$. Let τ be a stopping time s.t. $\mathbb{E} M_{t \wedge \tau}=0$, where M is the continuous local martingale of earlier Lemma 1 , and $\forall \omega$

$$
\sup _{s \leq \tau} \max _{i, j}\left\{\left|\sigma_{i j}^{2}(s, \omega)\right|+\left|b_{i}(s, \omega)\right|\right\}<\infty .
$$

Then from Lemma 1, taking Expectations,

$$
\begin{aligned}
& \mathbb{E}\left\|Y_{t \wedge \tau}^{0}\right\|_{p-1}^{2} \\
= & \mathbb{E} \int_{0}^{t \wedge \tau}\left\{2\left\langle Y_{s}^{0}, L(s, \omega) Y_{s}^{0}\right\rangle_{p-1}+\sum_{i}\left\|A_{i}(s, \omega) Y_{s}^{0}\right\|_{p-1}^{2}\right\} d s \\
\leq & K \int_{0}^{t} \mathbb{E}\left\|Y_{s \wedge \tau}^{0}\right\|_{p-1}^{2} d s .
\end{aligned}
$$

Hence using Gronwall's lemma, $E\left\|Y_{t \wedge \tau}^{0}\right\|_{p-1}^{2}=0$. Hence $Y_{t}^{1} \equiv Y_{t}^{2}$. This completes the proof of the theorem that $Y_{t}=\tau_{Z_{t}} Y_{0}$.

- Proof of the theorem for adjoint operator:

$$
\left\langle\psi, \partial_{i} \phi\right\rangle_{p}+\left\langle\partial_{i} \psi, \phi\right\rangle_{p}=\left\langle T_{i} \psi, \phi\right\rangle_{p}
$$

Using the expansion, for $\phi, \psi \in \mathcal{S}$

$$
\phi=\sum_{n} \phi_{n} h_{n}, \quad \psi=\sum_{n} \psi_{n} h_{n},
$$

and

$$
\partial_{i} \phi=\sum_{n} \phi_{n}\left\{\sqrt{\frac{n_{i}}{2}} h_{n-e_{i}}-\sqrt{\frac{n_{i}+1}{2}} h_{n+e_{i}}\right\}
$$

where $h_{n-e_{i}}=h_{n_{1}} \ldots h_{n_{i}-1} \ldots h_{n_{d}}, n=\left(n_{1}, \ldots, n_{d}\right)$.

Using the definition of the inner product $\langle\cdot, \cdot\rangle_{p}$ we can calculate the LHS of above as

$$
\left\langle\psi, \partial_{i} \phi\right\rangle_{p}+\left\langle\partial_{i} \psi, \phi\right\rangle_{p}=\left\langle\psi,\left(A_{i} U_{i}^{-}+B_{i} U_{i}^{+}\right) \phi\right\rangle_{p}
$$

where the linear operators $A_{i}, B_{i}, U_{i}^{-}, U_{i}^{+}$are given as

$$
\begin{aligned}
U_{i}^{ \pm} \psi & =\sum_{n} \psi_{n \pm e_{i}} h_{n} \\
A_{i} \psi & =\sum_{n}^{n} a_{n, i} \psi_{n} h_{n} \\
B_{i} \psi & =\sum_{n}^{n} b_{n, i} \psi_{n} h_{n}
\end{aligned}
$$

where,

$$
\begin{array}{r}
a_{n, i}:=\sqrt{\frac{n_{i}}{2}}\left[\frac{(2|n|+d-2)^{2 p}-(2|n|+d)^{2 p}}{(2|n|+d)^{2 p}}\right] \\
b_{n, i}:=\sqrt{\frac{n_{i}+1}{2}}\left[\frac{(2|n|+d)^{2 p}-(2(|n|+1)+d)^{2 p}}{(2|n|+d)^{2 p}}\right],
\end{array}
$$

and $n=\left(n_{1}, \ldots, n_{d}\right),|n|:=n_{1}+\ldots+n_{d}$.

Lemma

We have $\left|a_{n, i}\right|+\left|b_{n, i}\right| \leq \frac{M}{\sqrt{n_{i}}}$ for some $M>0$ and all $n_{i}, 1 \leq i \leq d$. In particular A_{i}, B_{i} are bounded linear operators.

Proof.

$a_{n, i}=\sqrt{\frac{n_{i}}{2}} f\left(\frac{1}{n_{i}}\right)$ where

$$
f(z):=\left(\frac{2+\alpha(n, i) z}{2+\beta(n, i) z}\right)^{2 p}-1
$$

Note that f is analytic in a neighbourhood containing 0 if we choose an analytic branch of $z \rightarrow z^{2 p}$ in a domain containing an neighbourhood of origin. Also note that $f(0)=0$ and in the neighbourhood of $0, f(z)=z \zeta(z)$, where ζ is an analytic function in that neighbourhood. Finally we take $T_{i}:=A_{i} U_{i}^{-}+B_{i} U_{i}^{+}$.

Remark :

$$
\partial_{i}^{*}=-\partial_{i}+T_{i}
$$

- We return to the linear SPDE with random coefficients:

$$
\begin{aligned}
Y_{t} & =Y_{0}+\int_{0}^{t} L(s, \omega) Y_{s} d s+\int_{0}^{t} A_{i}(s, \omega) Y_{s} d B_{s}^{i} \\
& =\tau_{Z_{t}} Y_{0}
\end{aligned}
$$

with

$$
Z_{t}=\int_{0}^{t} \sigma(s, \omega) \cdot d B_{s}+\int_{0}^{t} b(s, \omega) d s
$$

If we take $Y_{0}=\delta_{x}$ and define $\sigma_{i j}(s, \omega):=\bar{\sigma}_{i j}\left(X_{s}^{x}(\omega)\right)$, $b_{i}(s, \omega):=\bar{b}_{i}\left(X_{s}^{\times}(\omega)\right)$, where $\bar{\sigma}_{i j}, \bar{b}_{i}$ are the coefficients of the following SDE -

$$
\begin{aligned}
d X_{t}^{\times} & =\bar{\sigma}\left(X_{t}^{\times}\right) \cdot d B_{t}+\bar{b}\left(X_{t}^{\times}\right) d t \\
X_{0}^{x} & =x
\end{aligned}
$$

then $Z_{t} \equiv Z_{t}^{\chi}$ and $Y_{t}=\tau_{Z_{t}^{\chi}} \delta_{X}=\delta_{X_{t}^{\chi}}$.

- Note that $L(s, \omega) Y_{s}=L\left(Y_{s}\right)$, where $L(\varphi)$ is the non-linear diffusion operator. Similarly $A_{i}(s, \omega) Y_{s}=A_{i}\left(Y_{s}\right)$.

Uniqueness of the non-linear SPDE:

$$
Y_{t}=Y_{0}+\int_{0}^{t} L\left(Y_{s}\right) d s+\int_{0}^{t} A_{i}\left(Y_{s}\right) d B_{s}^{i}
$$

$$
\sigma_{i j}(f)=\left\langle\bar{\sigma}_{i j}, f\right\rangle, b_{i}(f)=\left\langle\bar{b}_{i}, f\right\rangle, \text { for } f \in \mathcal{S}_{-p}, p>\frac{d}{4}
$$

- Suppose $\left(Y_{t}^{1}\right)$ and $\left(Y_{t}^{2}\right)$ are two solutions in \mathcal{S}_{-p}.
- Let $\sigma_{i j}^{k}(s, \omega):=\sigma_{i j}\left(Y_{s}^{k}(\omega)\right), b_{i}^{k}(s, \omega):=b_{i}\left(Y_{s}^{k}(\omega)\right)$, for $k=1,2$. and let $L^{k}(s, \omega), A_{i}^{k}(s, \omega)$ be the random differential operators with coefficients $\sigma_{i j}^{k}(s, \omega)$ and $b_{i}^{k}(s, \omega)$, for $k=1,2 .\left(L^{k}(s, \omega) Y_{s}^{k}\right)$, $\left(A_{i}^{k}(s, \omega) Y_{s}^{k}\right)$ are jointly measurable, \mathcal{F}_{s}^{B} - adapted processes.
- Then, for $k=1,2$

$$
\begin{aligned}
Y_{t}^{k} & =Y_{0}+\int_{0}^{t} L^{k}(s, \omega) Y_{s}^{k} d s+\int_{0}^{t} A_{i}^{k}(s, \omega) Y_{s}^{k} d B_{s}^{i} \\
& =\tau_{Z_{t}^{k}} Y_{0}
\end{aligned}
$$

where

$$
Z_{t}^{k, i}=\int_{0}^{t} \sigma_{i j}^{k}(s, \omega) d B_{s}^{j}+\int_{0}^{t} b_{i}^{k}(s, \omega) d s
$$

- Now let $Y_{0}=\delta_{x}$. Then

$$
\begin{aligned}
\sigma_{i j}^{k}(s, \omega) & =\sigma_{i j}\left(Y_{s}^{k}(\omega)\right)=\sigma_{i j}\left(\delta_{x+Z_{s}^{k}}\right)=\left\langle\bar{\sigma}_{i j}, \delta_{x+Z_{s}^{k}}\right\rangle \\
& =\bar{\sigma}_{i j}\left(x+Z_{s}^{k}\right)=\bar{\sigma}_{i j}\left(X_{s}^{x, k}\right),
\end{aligned}
$$

where $X_{t}^{x, k}:=x+Z_{t}^{k}$. In particular

$$
X_{t}^{k}=x+Z_{t}^{k}=x+\int_{0}^{t} \bar{\sigma}\left(X_{s}^{k}\right) \cdot d B_{s}+\int_{0}^{t} \bar{b}\left(X_{s}^{k}\right) d s
$$

- Thus we have the following theorem-

Theorem

Let $Y_{0}=\delta_{x}$, then pathwise uniqueness of finite dimensional SDE holds iff pathwise uniqueness of non-linear SPDE holds.

Remark:

Uniqueness extends to the case $Y_{0}=\tau_{\chi} f$, for $f \in \mathcal{S}_{-p}$ arbitrary. Now we should have

$$
\begin{aligned}
\sigma_{i j}(s, \omega) & =\sigma_{i j}\left(Y_{s}(\omega)\right)=\left\langle\bar{\sigma}_{i j}, Y_{s}(\omega)\right\rangle \\
& =\left\langle\bar{\sigma}_{i j}, \tau_{Z_{s}}\left(\tau_{x} f\right)\right\rangle \text { etc. }
\end{aligned}
$$

