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S, &', Sp spaces

e Let S(RY) denotes the space of smooth rapidly decreasing real
valued functions on R9 with the topology given by L. Schwartz,
called the Schwartz space

S(RY) = {f € C(RY) | [x*0PF(x)| — 0, as |x| — oo} .

x| denotes the Euclidean norm of RY.

If 8= (81, ,Ba) €Z, then |B| = 1+ + Ba.
=080 9%

For p € R, Sp(R?) = closure of S(RY) w.r.t. || - |-

(f.g)p =Y _ (2lk|+ d)*P(f, h)olg, h)o, f.g €S.
kezd
{hk}keZi is an ONB for £2(R?, dx), called the Hermite functions.
(-, -)o denotes inner product in £2.

(] hk(Xl,w- 7Xd) = hkl(Xl) X e X hkd(Xd)x V(Xl,"' ,Xd) S Rd.
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e g<p=5,CS,.
o S=NpSp &' =UpS,.

e S’ is the topological dual space of S, viz. the space of tempered
distributions.

e [Rajeev, Thangavelu] x € RY, 7, : Sp = Sp.

[0l < CoP(xD¢llp,

P is the polynomial with non-negative coefficients, deg P = C,,.
o [Rajeev, Thangavelu] d, € S_, iff p > & and sup, ||0x]|, < occ.

e So=L%(RY% and p>0 = S, C L2(RY).
p>9d 4+ k=S, cchknl?RY).

o f eS8y (f,dx) =f(x)= fisbounded, f has a modification
which is continuous.

o C.(RY) denotes the space of continuous functions with compact
support.
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o Let { :1 < i< d} denote the standard basis for R,
9 : Sp— S, 1 and aa:s,,—>$p la -

1
2 2

ki
Ok = | = hi—e; =

hicse,-

(o))

f
Z(zm +d)P2 (9f hi)o ha

k

= > @Ikl +dyP2(=1) (F, Dihi)o b

= Z(zyky +d)P(—1) {\/5 (f, hk—er)o — ki ;r ! (f, hk+ei)0} Ay,
k

10:F15-y < €Y Q@IK|+d)? (A
k
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e Let T : Hy — H>, a bounded linear operator

) Let w is a finite measure on (2,4, ) and h: Q — Hy is
Bochner integrable i.e. [, [|h]|H, dp < oo, then

T(/thu) _/QT(h)du.

[I) When hs is Hi-valued jointly measurable adapted bounded
process satisfying fot ||th%_,1 ds < oo a.s. for every t > 0, then

T (/Ot he st) = /Ot T (hs) dB.
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Theorem (Ité's formula)

Let X = (X1, -+, Xq) be d- dimensional continuous
semi-martingale. Let f € Sp, then a.s. Yt > 0

t .
7x,f = Tx,f —/ Oi(Tx.f) dX.

/ 8/1 7x.f) Xj>s,

where the equation holds in Sp_;.

Lemma

If X := Xo+ M + V, continuous semi-martingale and hs(w) € Sq
an {Fs}- progressively measurable process s.t.

fo [hs(w)[13 d(X)s < o0; fo [hs(w)llqd| Vs < oo. Then

fo hs dXs € Sq is a continuous semi-martingale and

t t t
/ hs dXs = / hs dMs + / hs dVs.
0 0 0
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e Consider hs(w) = Oi7x.f, then
[hs(@)llp-1 = 10imx, fllp-1 < G [7xFllp < C2 P(IXs])IFl-

e Hence

t t
/0 10, FI2_1 d(X)s < C[IF]2 /0 P(X])2d(X)s < oc.
e Similarly,

t
[ 1t fa x|

<cifle ([ P(rxs|)2d<x’>s)1/2 ([ pxizawx.)

< 00

1/2

and
t t
/0 105, Fllperd] Vs < C 1]l /O P(X]) d|V]s < oo,
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proof of the theorem

First observe that when 7x f € Sp, then 0;7x.f, 857)(57‘ € Sp-1.
Let f € S C Sp. Since y — 7,f(x) = f(x — y), by Itd's formula

Tx,. f(x) = f(x — X¢)

= /aTxf x) dX!
/a,JTXS (x)d (X", XI)_,

Note,

t .
/arxf x) dX: = /<67'Xf dx) dX;

</ aszdesi,5X>
:/ a,'TXSdesi(X).
0
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proof continued.

Thus, for every x

(szf—er/ D, fdXi — / 8UTXsfd<Xi, Xf>s> (x) =0,

and hence, the L.h.s. above is zero as an element of S,_;. This
proves the theorem when f € S. For an arbitrary f € S,,, choose
fa€ S, ||f — fallp = 0, then

10i7x, fn — 0ix fllp—1 < CP(IXS[) |f — fall[p — O

Hence, for a suitable stopping time 7

tAT
E / 1075, — Br7, F121d(X)s — 0.
0
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proof continued.
Therefore,

tAT . tAT . 2
E ’/ 0iTx, fn dX, —/ Oitx,f dX,
0 0 p—1

tAT
< CE/ |0iTx. fa 8szf||p 1d(X)s — 0.
0

The convergence of
Jo Prx,fad (X7, XI) = [ 0%7x,f d (X', XI)_can be handled in
a similar manner. Clearly Tx.fn — Tx.f. This completes the proof.

L]
e Suppose,
dX; = 5(X;) - dB; + b(X:) dt
Xo = x.
Define 0, b; : S_p — R as a5(f) := (5j;, f), bi(f) :== (b;, ), for

Gijs bi € Sp, for p> &+ 1. 0;i(8x) = 7;(x), bi(dx) = bi(x).
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o Write X{ = x + Z;. Let f =65 € S_p and Y} := 72xf.
° L,A,‘ : S_p — S_p_l

2200 )ii(0)05¢ — Zb $)0i¢,
—ZUJI‘
Jj

Note that L(Ys), A;(Ys) are jointly measurable in (s,w) and FB
adapted and satisfying, for every t

/HL( lp_1ds < 00, and / ZH Yo)l2 . 1ds < 0o, as.

Hence the integrals are well defined as S_,_; valued continuous
adapted processes.
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Corollary

t t )
Yi=Yo +/ L(Ys)ds—i—/ Ai(Ys)dB,,
0 0

where sum is over repeated indices.

Proof.

The proof follows from 1té’s formula for 7zxf and the fact that

d(Z', 27) = (65")j(x+2) ds = (00")j(0xrzx) ds = (00)(Ys)ds.

O
e Remark Can take Yo = f € S_, then
dX; = 3" (X:) - dB: + b (X) dt,
Xo = 0.

5:’5‘(X) = (5jj, Txf), bf(x) = (b;, 7xf) and 0j;(g) = (7, &),

bi(g) = (bi, g) for g € S_p.
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SPDE for stochastic flows

o Let 5, bj € C°(RY).

e As mentioned earlier, a.s. Vt > 0, x — X is C*.
o Let i) € C, define Yi(v)) := [pa (x)dxxdx.

o Note that [o |t(x)|[|0xx[|-p dx < oo, for p > &

e Because, t — dxx = Txxdo € S_p is continuous, {Y:(¢)} is a
continuous, S,p—valued {FEB}- adapted process.

e Note that (f, Yi(¢ fw f(X{)dx.
o Let p €S,
EP 1 2
Lo =5 > 05 ((55°)50) Za
ij
¢ = —-j{jtﬂi(ayﬂﬁ .
J
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Lemma
Let r > 0 be an integer, Mys¢ := 0¢, foroc € C;° and ¢ € S. Then
My : S_y — S_q is a bounded linear operator for q > r +1, r > 0.

Corollary
L*, /_\}k : S_p = S_p_2 are bounded linear operators.

Theorem
Let ) € C.(R?) and p > 0 an integer. Then {Y:(¢))} satisfies the
following linear SPDE in S_,_5 for{ € S_p, Vt > 0

t t _
Yt:¢+/ L*(Ys)ds+/ A2(Y.)dB:.
0 0

Proof. Note,

t t
/O JAH (Vo) 5 _ads < C /0 IVl pds < Gut,

because, || Ys[|—p < [ t(x)| ll0xz[l-p dx < Cl[¥]|1a.
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Similarly, [J |L*(Ys)||—p—2ds < Cot. Thus LHS and RHS are well
defined continuous process in S_,_». By Itd's formula on R, for
fes

t t )
F(XX) = f(x)+/ Zf(XSX)ds++/ Aif(XX)dBL.
0 0

Multiplying the above equation by v (x), integrating w.r.t.
Lebesgue measure dx, applying (stochastic) Fubini's theorem and
using the fact that
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proof of lemma.

IMsl2<c 3 / x93 (x) 2l

lal+|B]<2r

<C > /|X°‘85¢)(x)|2dx
)

loe|+]8]<2(r+1
< Cl)21 < Clgl3.

Mol —q = sup |(f,o¢)|= sup |(of, ¢)]
fllq<1 |Fllg<1
< sup|of| |8l
fes,|Ifllg<1
SC( sup Hqu> [éll-r
fes,|Ifllg<1
< Cloll-r
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Corollary
Let p > % be an positive integer and 1)(t) ;== EY;. Then
Y(t) € S—p and

w=v [ Lu(s) ds,

holds in S_,_5. In particular the map t — 1(t) : [0,00) = S_p_2
is C1 and we have

Or(t) = L (1),
¥(0) = ¢.

Proof. Note that, .
IE/ A (Ys)dBL = 0.
0
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proof continued.

Hence, we have in S_,_»,
t -
W(t) = EY, = ¢+E/ I*v, ds
0
t
—v+ [ i) ds
0

where we have used E [*Y; = [*EY;, by virtue of the boundedness
of L*.

L]
e Remark : In a similar manner, 1) = 4 a finite signed measure, we
can show that Y:(¢ féxx (dx) satisfies the adjoint SPDE
with initial value M
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