From SDE's to SPDE's

B. Rajeev (Indian Statistical Institute, Bangalore Centre, India)

These lectures are based on joint work with - S. Thangavelu, S. Bhar, V. Mandrekar, L. Gawarecki and B. Sarkar

Lecture 1: Introduction and Motivation

Introduction

- Let $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, P)$ be a filtered probability space satisfying the *usual conditions*:
 - 1) $\mathcal{F}_{t+} := \cap_{s>t} \mathcal{F}_s = \mathcal{F}_t$, $\forall t \geq 0$,
 - II) \mathcal{F}_0 contains all null sets.
- Consider the following continuous semi-martingale on $(\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t\geq 0}, P)$

$$X_t := X_0 + M_t + V_t,$$

where,

- * $\{M_t\}$ continuous, local $\{\mathcal{F}_t\}$ martingale, $M_0 \equiv 0$,
- * $\{V_t\}$ continuous $\{\mathcal{F}_t\}$ adapted process of finite variation, $V_0 \equiv 0$.

- $\{M_t\}$ has a quadratic variation i.e. \exists an unique continuous non-decreasing $\{\mathcal{F}_t\}$ adapted process denoted by $\{\langle M \rangle_t\}$ s.t. $\{M_t^2 \langle M \rangle_t\}$ is a continuous, local $\{\mathcal{F}_t\}$ martingale.
- Define,

$$\langle X \rangle_t := \langle M \rangle_t$$

• Let $X_t:=(X_t^1,\cdots,X_t^d)\in\mathbb{R}^d$ and $X_t^i:=X_0^i+M_t^i+V_t^i$, for $i=1,2,\cdots,d$, then

$$\left\langle X^{i}, X^{j}\right\rangle_{t} = \left\langle M^{i}, M^{j}\right\rangle_{t} = \frac{1}{4} \left\{ \left\langle M^{i} + M^{j}\right\rangle_{t} - \left\langle M^{i} - M^{j}\right\rangle_{t} \right\}$$

• $\{\langle M^i, M^j \rangle_t\}$ continuous $\{\mathcal{F}_t\}$ - adapted process of finite variation.

- Let $\{h(t,\omega)\}$ be an $\{\mathcal{F}_t\}$ progressively measurable process satisfying $\int_0^t h^2(s,\omega)\,d\langle X\rangle_s < \infty$, $\forall t$ a.s.
- Then the stochastic integral of h w.r.t. $X_t \equiv M_t$ is a continuous local martingale denoted by $\int_0^t h(s) dX_s =: I(h)(t)$ with the following properties :

1)
$$I(h)(0) \equiv 0$$
,

II)
$$I(\alpha h_1 + \beta h_2)(t) = \alpha I(h)(t) + \beta I(h_2)(t)$$
,

III) The quadratic variation
$$\langle I(h)\rangle_t=\int_0^t h^2(s)\,d\langle X\rangle_s$$
,

IV) When
$$h(s,\omega) := h(\omega)I_{(u,v]}(s)$$
, where $h \in \mathcal{F}_u$, then $I(h)(t) = h(\omega)(X_{t \wedge v} - X_{t \wedge u})$.

V) If
$$\mathbb{E} \int_0^t h^2(s) d\langle X \rangle_s < \infty$$
, then

$$\mathbb{E}(I(h)(t))^2 = \mathbb{E}\int_0^t h^2(s) \, d\langle X \rangle_s.$$

Itô's formula

Theorem (Itô's formula)

Let $f: \mathbb{R}^d \to \mathbb{R}$ be a C^2 - function

$$f \circ X_t = f \circ X_0 + \int_0^t \partial_i f \circ X_s \, dX_s^i + \frac{1}{2} \int_0^t \partial_{ij}^2 f \circ X_s \, d\left\langle X^i, X^j \right\rangle_s,$$

where, $(\partial_i f \circ X_s)$, $(\partial_{ij}^2 f \circ X_s)$ are progressively measurable adapted processes and $dX_s^i = dM_s^i + dV_s^i$ and sum is over repeated indices.

ullet If $X_0 \equiv x = (x^1, \cdots, x^d) \in \mathbb{R}^d$, then

$$X_t = x + M_t + V_t = x + Z_t$$
, where $Z_t := M_t + V_t$.

• Introduce *Translation operator* au_z , for $z \in \mathbb{R}^d$

$$\tau_z f(x) := f(x-z).$$

• Therefore, $f(X_t) = f(x + Z_t) = \tau_{-Z_t} f(x)$.

$$\partial_i f(X_t) = \partial_i f(x + Z_t) = \tau_{-Z_t}(\partial_i f)(x) = \partial_i (\tau_{-Z_t} f)(x).$$

Similarly,

$$\partial_{ij}^2 f(X_t) = \partial_{ij}^2 (\tau_{-Z_t} f)(x).$$

• Hence, we can rewrite the Itô's formula

$$\tau_{-Z_{t}}f(x) = f(x) + \int_{0}^{t} \partial_{i}(\tau_{-Z_{s}}f)(x) dZ_{s}^{i}$$

$$+ \frac{1}{2} \int_{0}^{t} \partial_{ij}^{2}(\tau_{-Z_{s}}f)(x) d\langle Z^{i}, Z^{j} \rangle_{s}$$

$$\Rightarrow \tau_{-Z_{t}}f = f + \int_{0}^{t} \partial_{i}(\tau_{-Z_{s}}f) dZ_{s}^{i}$$

$$+ \frac{1}{2} \int_{0}^{t} \partial_{ij}^{2}(\tau_{-Z_{s}}f) d\langle Z^{i}, Z^{j} \rangle_{s}.$$

- The above equation can be written as an equation in a suitable space of functions H.
- Interesting case, when H is a Hilbert space having the property that $\tau_z f \in H$, whenever $f \in H$.

Stochaastic Differential Equations

$$dX_t = \bar{\sigma}(X_t) \cdot dB_t + \bar{b}(X_t) dt,$$

$$X_0 = x.$$

$$X_t = x + \int_0^t \bar{\sigma}(X_s) \cdot dB_s + \int_0^t \bar{b}(X_s) ds.$$

• $x \in \mathbb{R}^d$, $\bar{\sigma} = (\bar{\sigma}_{ij}) : \mathbb{R}^d \to \mathbb{R}^{d^2}$, $\bar{b} : \mathbb{R}^d \to \mathbb{R}^d$ and the coefficients $(\bar{\sigma}_{ij}(X_s))$, $(\bar{b}_i(X_s))$ are jointly measurable adapted processes. $(B_t) = (B_t^1, \cdots, B_t^d)$ and $X_t = (X_t^1, \cdots, X_t^d)$ are \mathcal{F}_{t^-} adapted.

Theorem

If $\bar{\sigma}$, \bar{b} are Lipschitz continuous, i.e. \exists a constant $k \in \mathbb{R}$

$$|\bar{\sigma}_{ij}(x)-\bar{\sigma}_{ij}(y)|+|\bar{b}_i(x)-\bar{b}_i(y)|\leq k|x-y|,$$

then the above SDE has an unique global strong solution $\{X_t^x\}_{t\geq 0}$.

Remark

- I) Global Lipschitz \Rightarrow solution exists $\forall t, t \geq 0$.
- II) Local Lipschitz $\Rightarrow \exists \eta \text{ and } 0 < \eta < \infty \text{ s.t. } \{X_t\}_{0 \le t < \eta}$.
- III) Strong solution $\Leftrightarrow X_t \in \mathcal{F}_t^B := \sigma\{B_s, s \leq t\}$.
- IV) The solution has strong Markov property.
- Let C_b^{∞} denotes the space of C^{∞} functions with uniformly bounded derivative.

Theorem

Suppose $\bar{\sigma}_{ij}, \bar{b}_i \in C_b^{\infty}(\mathbb{R}^d)$. Then almost surely, the map : $x \to X_t^{\times}(\omega)$ is a C^{∞} - diffeomorphism for every $t \ge 0$.

Remark

 $\bar{\sigma}_{ij}, \bar{b}_i \in C_b^{\infty}(\mathbb{R}^d)$, they are Lipschitz continuous and global strong solution exists.

• For $\phi \in C^{\infty}(\mathbb{R}^d)$, let us define

$$\bar{L}^*\phi(x) := \frac{1}{2} \sum_{i:} \partial_{ij}^2 \left((\bar{\sigma}\bar{\sigma}^t)_{ij}(x)\phi(x) \right) - \sum_{i:} \partial_i \left(\bar{b}_i(x)\phi(x) \right).$$

• The transition probabilty function

$$P(t, x, A) := P(X_t^x \in A).$$

• Then P(t, x, A) satisfies the 'forward equation'

$$\frac{\partial P}{\partial t}(t, x, \cdot) = \bar{L}^* P(t, x, \cdot),$$
$$P(0, x, \cdot) = \delta_x.$$

This means.

$$\langle f, P(t,x,\cdot)\rangle = f(x) + \int_0^t \langle \bar{L}f, P(s,x,\cdot)\rangle ds$$

• Note that, $\mathbb{E} f(X_t^x) := \langle f, P(t, x, \cdot) \rangle$, $\langle f, \mu \rangle := \int f(x) \mu(dx)$ and

$$ar{L}f(x) := rac{1}{2} \sum_{i:} (ar{\sigma}ar{\sigma}^t)_{ij}(x) \partial_{ij}^2 f(x) + \sum_{i:} ar{b}_i(x) \partial_i f(x).$$

From SDE's to SPDE's

$$X_t^{x} = x + \int_0^t \bar{\sigma}(X_s^{x}) \cdot dB_s + \int_0^t \bar{b}(X_s^{x}) ds$$

= $x + Z_t^{x}$.

Then,

$$\tau_{-Z_{t}^{\times}}f = f + \int_{0}^{t} \partial_{i}\tau_{-Z_{s}^{\times}}f \,dZ_{s}^{i} + \frac{1}{2} \int_{0}^{t} \partial_{ij}^{2}\tau_{-Z_{s}^{\times}}f \,d\left\langle Z^{i}, Z^{j}\right\rangle_{s}$$

Remark

We shall consider the Hilbert spaces H with the property that $\tau_z f \in H$, whenever $f \in H$. In addition when H is a Hermite-Sobolev space i.e. $H \equiv \mathcal{S}_{-p}$, for $p > \frac{d}{4}$, then $f = \delta_x \in H$. Then $\tau_z = \sigma_x \delta_x = \delta_x + \sigma_x \delta_y = \delta_x + \sigma_x \delta$

Therefore,

$$dZ_t^x = \bar{\sigma}(x + Z_t^x) \cdot dB_t + \bar{b}(x + Z_t^x) dt$$

= $\sigma(\delta_{x+Z_t^x}) \cdot dB_t + b(\delta_{x+Z_t^x}) dt$,

where, $\sigma_{ij}: H \to \mathbb{R}$ s.t. $\sigma_{ij}(\delta_x) = \bar{\sigma}_{ij}(x)$.

• For example, if

$$\bar{\sigma} \in H' \Rightarrow \sigma_{ij}(f) = \langle \bar{\sigma}_{ij}, f \rangle, f \in H.$$

Similarly,

$$b_i(f) = \langle \bar{b}_i, f \rangle, f \in H,$$

also satisfies $b_i(\delta_x) = \bar{b}_i(x)$, for $f = \delta_x$.

ullet Hence, for $f=\delta_{\scriptscriptstyle X}$

$$Y_t := \delta_{X+Z_t} = \delta_{X_t} = \tau_{-Z_t} f.$$

• Then from the earlier Itô's formula

$$Y_t = \delta_{\mathsf{X}} + \int_0^t L(Y_s) ds + \int_0^t A_i(Y_s) dB_s^i,$$

where $(L(Y_s))$, $(A_i(Y_s))$ are jointly measurable, adapted and

$$L(\phi) := rac{1}{2} \sum_{ii} (\sigma \sigma^t)_{ij} (\phi) \partial_{ij}^2 \phi - \sum_i b_i (\phi) \partial_i \phi,$$

$$A(\phi) := (A_1\phi, \cdots, A_d\phi)$$

$$A_i(\phi) := -\sum_i \sigma_{ji}(\phi)\partial_j \phi$$

Remark

1)

$$\langle f, L(\delta_x) \rangle = \frac{1}{2} \sum_{ij} (\bar{\sigma} \bar{\sigma}^t)_{ij}(x) \partial_{ij}^2 f(x) + \sum_i \bar{b}_i(x) \partial_i f(x) =: \bar{L}f(x),$$

$$\langle f, A_i(\delta_x) \rangle = \sum_i \bar{\sigma}_{ji}(x) \partial_j f(x) =: \bar{A}_i f(x).$$

- II) To arrive at the SPDE we used the imbedding $\mathbb{R}^d \to H$ given by $x \to \delta_x$ and consequently $X_t^x \to \delta_{X_t^x} = \delta_{x+Z_t^x}$.
- III) Consider $\bar{\sigma}_{ij}$, $\bar{b}_i \in C_b^{\infty}(\mathbb{R}^d)$ and let $f \in \mathcal{S}$ (Schwartz space), then the map $x \to f \circ X_t^x$ is C^{∞} . Thus we get the linear map from $\mathcal{S} \to C^{\infty}$: $f \to X_t(f) := f \circ X_t$.
- Ex. For $\psi \in C_c^\infty$, define $Y_t(\psi) := \int_{\mathbb{R}^d} \psi(x) \delta_{X_t^\times} dx$. Then Y_t is the formal adjoint of the map $f \to X_t^\times(f)$ as can be seen from the duality relation—

$$\langle Y_t(\psi), f \rangle = \int_{\mathbb{D}^d} \psi(x) f(X_t^x) dx = \int_{\mathbb{D}^d} \psi(x) (X_t^x(f))(x) dx = \langle \psi, X_t(f) \rangle.$$

From Itô's formula

$$f\circ X_t^{\times}=f(x)+\int_0^t \bar{L}f(X_s^{\times})ds+\int_0^t \bar{A}_if(X_s^{\times})dB_s^i,$$

 $x \to f \circ X_t^x \in H$. Where $x \to \bar{L}f(X_s^x)$, $x \to \bar{A}_i f(X_s^x)$ are C^∞ functions. Then, from the above mentioned adjoint relation we get

$$Y_t(\psi) = \psi + \int_0^t \bar{L}^* Y_s(\psi) ds + \int_0^t \bar{A}_i^* Y_s(\psi) dB_s^i,$$

because

$$\left\langle \bar{L}f(X_{s}^{\cdot}),\,\psi\right\rangle =\left\langle \bar{L}f\,,\,Y_{s}(\psi)\right\rangle =\left\langle f\,,\,\bar{L}^{*}Y_{s}(\psi)\right\rangle ,$$

$$\langle \bar{A}_i f(X_s), \psi \rangle = \langle \bar{A}_i f, Y_s(\psi) \rangle = \langle f, \bar{A}_i^* Y_s(\psi) \rangle.$$

Remark

- I) The above computations extend to the case when ψ is a finite signed measure, say $\psi=\mu$; in that case define $Y_t(\psi):=\int_{\mathbb{R}^d}\delta_{X_t^\times}\,d\mu(x)$. In particular, when $\psi=\delta_x$, then $Y_t(\psi)=\delta_{X_t^\times}$. In this case the linear SPDE above coincides with the non-linear SPDE derived earlier for $\delta_{X_t^\times}$.
- II) Taking expectation on both sides of the above linear SPDE

$$\mathbb{E}(Y_t(\psi)) = \psi + \int_0^t \bar{L}^* \mathbb{E}(Y_s(\psi)) ds.$$

when $\psi = \delta_{\mathsf{x}}$ we get the forward equation satisfied by

$$\mathbb{E}(Y_t(\psi)) = \mathbb{E}(\delta_{X_t^{\times}}) = P(s, x, \cdot).$$

Note that,

$$\langle f, \mathbb{E}(Y_t(\psi)) \rangle = \langle f, \mathbb{E}(\delta_{X_t^x}) \rangle = \mathbb{E} f(X_t^x) = \int f(y) P(s, x, dy).$$

\mathcal{S} , \mathcal{S}' , \mathcal{S}_p spaces

• Let $\mathcal{S}(\mathbb{R}^d)$ denotes the space of smooth rapidly decreasing real valued functions on \mathbb{R}^d with the topology given by L. Schwartz, called the Schwartz space

$$\mathcal{S}(\mathbb{R}^d) := \left\{ f \in C^\infty(\mathbb{R}^d) \, \big| \, |x^\alpha \partial^\beta f(x)| \to 0, \, \mathsf{as} \, |x| \to \infty \right\}.$$

- |x| denotes the Euclidean norm of \mathbb{R}^d .
- If $\beta = (\beta_1, \dots, \beta_d) \in \mathbb{Z}_+^d$, then $|\beta| = \beta_1 + \dots + \beta_d$.
- $\partial^{\beta} \phi = \partial_1^{\beta_1} \cdots \partial_d^{\beta_d} \phi$.
- For $p \in \mathbb{R}$, $S_p(\mathbb{R}^d)$ = closure of $S(\mathbb{R}^d)$ w.r.t. $\|\cdot\|_p$.

$$\langle f,g \rangle_p := \sum_{k \in \mathbb{Z}_q^d} (2|k|+d)^{2p} \langle f,h_k \rangle_0 \langle g,h_k \rangle_0, \quad f,g \in \mathcal{S}.$$

 $\{h_k\}_{k\in\mathbb{Z}^d_+}$ is an ONB for $\mathcal{L}^2(\mathbb{R}^d, dx)$, called the Hermite functions. $\langle\cdot\,,\,\cdot\rangle_0$ denotes inner product in \mathcal{L}^2 .

• $h_k(x_1, \dots, x_d) := h_{k_1}(x_1) \times \dots \times h_{k_d}(x_d), \ \forall (x_1, \dots, x_d) \in \mathbb{R}^d$