From SDE's to SPDE's

B. Rajeev
(Indian Statistical Institute, Bangalore Centre, India)

These lectures are based on joint work with - S. Thangavelu, S. Bhar, V. Mandrekar, L. Gawarecki and B. Sarkar

Lecture 1 : Introduction and Motivation

Introduction

- Let $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$ be a filtered probability space satisfying the usual conditions:
I) $\mathcal{F}_{t+}:=\cap_{s>t} \mathcal{F}_{s}=\mathcal{F}_{t}, \forall t \geq 0$,
II) \mathcal{F}_{0} contains all null sets.
- Consider the following continuous semi-martingale on $\left(\Omega, \mathcal{F},\left\{\mathcal{F}_{t}\right\}_{t \geq 0}, P\right)$

$$
X_{t}:=X_{0}+M_{t}+V_{t}
$$

where,
$\star\left\{M_{t}\right\}$ continuous, local $\left\{\mathcal{F}_{t}\right\}$ martingale, $M_{0} \equiv 0$,
$\star\left\{V_{t}\right\}$ continuous $\left\{\mathcal{F}_{t}\right\}$ - adapted process of finite variation, $V_{0} \equiv 0$.

- $\left\{M_{t}\right\}$ has a quadratic variation i.e. \exists an unique continuous non-decreasing $\left\{\mathcal{F}_{t}\right\}$ - adapted process denoted by $\left\{\langle M\rangle_{t}\right\}$ s.t. $\left\{M_{t}^{2}-\langle M\rangle_{t}\right\}$ is a continuous, local $\left\{\mathcal{F}_{t}\right\}$ martingale.
- Define,

$$
\langle X\rangle_{t}:=\langle M\rangle_{t}
$$

- Let $X_{t}:=\left(X_{t}^{1}, \cdots, X_{t}^{d}\right) \in \mathbb{R}^{d}$ and $X_{t}^{i}:=X_{0}^{i}+M_{t}^{i}+V_{t}^{i}$, for $i=1,2, \cdots, d$, then

$$
\left\langle X^{i}, X^{j}\right\rangle_{t}=\left\langle M^{i}, M^{j}\right\rangle_{t}=\frac{1}{4}\left\{\left\langle M^{i}+M^{j}\right\rangle_{t}-\left\langle M^{i}-M^{j}\right\rangle_{t}\right\}
$$

- $\left\{\left\langle M^{i}, M^{j}\right\rangle_{t}\right\}$ continuous $\left\{\mathcal{F}_{t}\right\}$ - adapted process of finite variation.
- Let $\{h(t, \omega)\}$ be an $\left\{\mathcal{F}_{t}\right\}$ - progressively measurable process satisfying $\int_{0}^{t} h^{2}(s, \omega) d\langle X\rangle_{s}<\infty, \forall t$ a.s.
- Then the stochastic integral of h w.r.t. $X_{t} \equiv M_{t}$ is a continuous local martingale denoted by $\int_{0}^{t} h(s) d X_{s}=: I(h)(t)$ with the following properties :
I) $I(h)(0) \equiv 0$,
II) $I\left(\alpha h_{1}+\beta h_{2}\right)(t)=\alpha I(h)(t)+\beta I\left(h_{2}\right)(t)$,
III) The quadratic variation $\langle I(h)\rangle_{t}=\int_{0}^{t} h^{2}(s) d\langle X\rangle_{s}$,
IV) When $h(s, \omega):=h(\omega) I_{(u, v]}(s)$, where $h \in \mathcal{F}_{u}$, then $I(h)(t)=h(\omega)\left(X_{t \wedge v}-X_{t \wedge u}\right)$.
V) If $\mathbb{E} \int_{0}^{t} h^{2}(s) d\langle X\rangle_{s}<\infty$, then

$$
\mathbb{E}(I(h)(t))^{2}=\mathbb{E} \int_{0}^{t} h^{2}(s) d\langle X\rangle_{s}
$$

Itô's formula

Theorem (Itô's formula)
Let $f: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a C^{2} - function
$f \circ X_{t}=f \circ X_{0}+\int_{0}^{t} \partial_{i} f \circ X_{s} d X_{s}^{i}+\frac{1}{2} \int_{0}^{t} \partial_{i j}^{2} f \circ X_{s} d\left\langle X^{i}, X^{j}\right\rangle_{s}$,
where, $\left(\partial_{i} f \circ X_{s}\right),\left(\partial_{i j}^{2} f \circ X_{s}\right)$ are progressively measurable adapted processes and $d X_{s}^{i}=d M_{s}^{i}+d V_{s}^{i}$ and sum is over repeated indices.

- If $X_{0} \equiv x=\left(x^{1}, \cdots, x^{d}\right) \in \mathbb{R}^{d}$, then

$$
X_{t}=x+M_{t}+V_{t}=x+Z_{t}, \quad \text { where } \quad Z_{t}:=M_{t}+V_{t}
$$

- Introduce Translation operator τ_{z}, for $z \in \mathbb{R}^{d}$

$$
\tau_{z} f(x):=f(x-z)
$$

- Therefore, $f\left(X_{t}\right)=f\left(x+Z_{t}\right)=\tau_{-Z_{t}} f(x)$.

$$
\partial_{i} f\left(X_{t}\right)=\partial_{i} f\left(x+Z_{t}\right)=\tau_{-Z_{t}}\left(\partial_{i} f\right)(x)=\partial_{i}\left(\tau_{-Z_{t}} f\right)(x) .
$$

- Similarly,

$$
\partial_{i j}^{2} f\left(X_{t}\right)=\partial_{i j}^{2}\left(\tau_{-z_{t}} f\right)(x)
$$

- Hence, we can rewrite the Itô's formula

$$
\begin{aligned}
\tau_{-Z_{t}} f(x)= & f(x)+\int_{0}^{t} \partial_{i}\left(\tau_{-Z_{s}} f\right)(x) d Z_{s}^{i} \\
& +\frac{1}{2} \int_{0}^{t} \partial_{i j}^{2}\left(\tau_{-Z_{s}} f\right)(x) d\left\langle Z^{i}, Z^{j}\right\rangle_{s} \\
\Rightarrow \tau_{-Z_{t}} f= & f+\int_{0}^{t} \partial_{i}\left(\tau_{-Z_{s}} f\right) d Z_{s}^{i} \\
& +\frac{1}{2} \int_{0}^{t} \partial_{i j}^{2}\left(\tau_{-Z_{s}} f\right) d\left\langle Z^{i}, Z^{j}\right\rangle_{s} .
\end{aligned}
$$

- The above equation can be written as an equation in a suitable space of functions H.
- Interesting case, when H is a Hilbert space having the property that $\tau_{z} f \in H$, whenever $f \in H$.

Stochaastic Differential Equations

$$
\begin{aligned}
& d X_{t}=\bar{\sigma}\left(X_{t}\right) \cdot d B_{t}+\bar{b}\left(X_{t}\right) d t \\
& X_{0}=x \\
X_{t}= & x+\int_{0}^{t} \bar{\sigma}\left(X_{s}\right) \cdot d B_{s}+\int_{0}^{t} \bar{b}\left(X_{s}\right) d s
\end{aligned}
$$

- $x \in \mathbb{R}^{d}, \bar{\sigma}=\left(\bar{\sigma}_{i j}\right): \mathbb{R}^{d} \rightarrow \mathbb{R}^{d^{2}}, \bar{b}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ and the coefficients $\left(\bar{\sigma}_{i j}\left(X_{s}\right)\right),\left(\bar{b}_{i}\left(X_{s}\right)\right)$ are jointly measurable adapted processes. $\left(B_{t}\right)=\left(B_{t}^{1}, \cdots, B_{t}^{d}\right)$ and $X_{t}=\left(X_{t}^{1}, \cdots, X_{t}^{d}\right)$ are $\mathcal{F}_{t^{-}}$adapted.
Theorem
If $\bar{\sigma}, \bar{b}$ are Lipschitz continuous, i.e. \exists a constant $k \in \mathbb{R}$

$$
\left|\bar{\sigma}_{i j}(x)-\bar{\sigma}_{i j}(y)\right|+\left|\bar{b}_{i}(x)-\bar{b}_{i}(y)\right| \leq k|x-y|,
$$

then the above SDE has an unique global strong solution $\left\{X_{t}^{\times}\right\}_{t \geq 0}$.

- Remark
I) Global Lipschitz \Rightarrow solution exists $\forall t, t \geq 0$.
II) Local Lipschitz $\Rightarrow \exists \eta$ and $0<\eta<\infty$ s.t. $\left\{X_{t}\right\}_{0 \leq t<\eta}$.
III) Strong solution $\Leftrightarrow X_{t} \in \mathcal{F}_{t}^{B}:=\sigma\left\{B_{s}, s \leq t\right\}$.
IV) The solution has strong Markov property.
- Let C_{b}^{∞} denotes the space of C^{∞} functions with uniformly bounded derivative.

Theorem
Suppose $\bar{\sigma}_{i j}, \bar{b}_{i} \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$. Then almost surely, the map : $x \rightarrow X_{t}^{x}(\omega)$ is a C^{∞} - diffeomorphism for every $t \geq 0$.

- Remark
$\bar{\sigma}_{i j}, \bar{b}_{i} \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$, they are Lipschitz continuous and global strong solution exists.
- For $\phi \in C^{\infty}\left(\mathbb{R}^{d}\right)$, let us define

$$
\bar{L}^{*} \phi(x):=\frac{1}{2} \sum_{i j} \partial_{i j}^{2}\left(\left(\bar{\sigma} \bar{\sigma}^{t}\right)_{i j}(x) \phi(x)\right)-\sum_{i} \partial_{i}\left(\bar{b}_{i}(x) \phi(x)\right) .
$$

- The transition probabilty function

$$
P(t, x, A):=P\left(X_{t}^{x} \in A\right)
$$

- Then $P(t, x, A)$ satisfies the 'forward equation'

$$
\begin{aligned}
& \frac{\partial P}{\partial t}(t, x, \cdot)=\bar{L}^{*} P(t, x, \cdot) \\
& P(0, x, \cdot)=\delta_{x}
\end{aligned}
$$

This means,

$$
\langle f, P(t, x, \cdot)\rangle=f(x)+\int_{0}^{t}\langle\bar{L} f, P(s, x, \cdot)\rangle d s
$$

- Note that, $\mathbb{E} f\left(X_{t}^{x}\right):=\langle f, P(t, x, \cdot)\rangle,\langle f, \mu\rangle:=\int f(x) \mu(d x)$ and

$$
\bar{L} f(x):=\frac{1}{2} \sum_{i j}\left(\bar{\sigma} \bar{\sigma}^{t}\right)_{i j}(x) \partial_{i j}^{2} f(x)+\sum_{i} \bar{b}_{i}(x) \partial_{i} f(x)
$$

From SDE's to SPDE's

$$
\begin{aligned}
X_{t}^{x} & =x+\int_{0}^{t} \bar{\sigma}\left(X_{s}^{x}\right) \cdot d B_{s}+\int_{0}^{t} \bar{b}\left(X_{s}^{x}\right) d s \\
& =x+Z_{t}^{x}
\end{aligned}
$$

Then,

$$
\begin{aligned}
\tau_{-Z_{t}^{\times}} f= & f+\int_{0}^{t} \partial_{i} \tau_{-Z_{s}^{\times}} f d Z_{s}^{i} \\
& +\frac{1}{2} \int_{0}^{t} \partial_{i j}^{2} \tau_{-Z_{s}^{\times}} f d\left\langle Z^{i}, Z^{j}\right\rangle_{s}
\end{aligned}
$$

- Remark

We shall consider the Hilbert spaces H with the property that $\tau_{z} f \in H$, whenever $f \in H$. In addition when H is a Hermite-Sobolev space i.e. $H \equiv \mathcal{S}_{-p}$, for $p>\frac{d}{4}$, then $f=\delta_{x} \in H$. Then $\tau_{-Z_{t}^{\chi}} f=\tau_{-Z_{t}^{\chi}} \delta_{x}=\delta_{x+Z_{t}^{\chi}}$.

- Therefore,

$$
\begin{aligned}
d Z_{t}^{x} & =\bar{\sigma}\left(x+Z_{t}^{x}\right) \cdot d B_{t}+\bar{b}\left(x+Z_{t}^{x}\right) d t \\
& =\sigma\left(\delta_{x+Z_{t}^{x}}\right) \cdot d B_{t}+b\left(\delta_{x+Z_{t}^{\times}}\right) d t
\end{aligned}
$$

where, $\sigma_{i j}: H \rightarrow \mathbb{R}$ s.t. $\sigma_{i j}\left(\delta_{x}\right)=\bar{\sigma}_{i j}(x)$.

- For example, if

$$
\bar{\sigma} \in H^{\prime} \Rightarrow \sigma_{i j}(f)=\left\langle\bar{\sigma}_{i j}, f\right\rangle, \quad f \in H .
$$

Similarly,

$$
b_{i}(f)=\left\langle\bar{b}_{i}, f\right\rangle, \quad f \in H
$$

also satisfies $b_{i}\left(\delta_{x}\right)=\bar{b}_{i}(x)$, for $f=\delta_{x}$.

- Hence, for $f=\delta_{x}$

$$
Y_{t}:=\delta_{x+Z_{t}}=\delta_{X_{t}}=\tau_{-Z_{t}} f
$$

- Then from the earlier Itô's formula

$$
Y_{t}=\delta_{x}+\int_{0}^{t} L\left(Y_{s}\right) d s+\int_{0}^{t} A_{i}\left(Y_{s}\right) d B_{s}^{i}
$$

where $\left(L\left(Y_{s}\right)\right),\left(A_{i}\left(Y_{s}\right)\right)$ are jointly measurable, adapted and

$$
\begin{aligned}
L(\phi) & :=\frac{1}{2} \sum_{i j}\left(\sigma \sigma^{t}\right)_{i j}(\phi) \partial_{i j}^{2} \phi-\sum_{i} b_{i}(\phi) \partial_{i} \phi, \\
A(\phi) & :=\left(A_{1} \phi, \cdots, A_{d} \phi\right) \\
A_{i}(\phi) & :=-\sum_{j} \sigma_{j i}(\phi) \partial_{j} \phi
\end{aligned}
$$

- Remark
I)

$$
\begin{gathered}
\left\langle f, L\left(\delta_{x}\right)\right\rangle=\frac{1}{2} \sum_{i j}\left(\bar{\sigma} \bar{\sigma}^{t}\right)_{i j}(x) \partial_{i j}^{2} f(x)+\sum_{i} \bar{b}_{i}(x) \partial_{i} f(x)=: \bar{L} f(x), \\
\left\langle f, A_{i}\left(\delta_{x}\right)\right\rangle=\sum_{j} \bar{\sigma}_{j i}(x) \partial_{j} f(x)=: \bar{A}_{i} f(x) .
\end{gathered}
$$

II) To arrive at the SPDE we used the imbedding $\mathbb{R}^{d} \rightarrow H$ given by $x \rightarrow \delta_{x}$ and consequently $X_{t}^{x} \rightarrow \delta_{X_{t}^{x}}=\delta_{x+Z_{t}^{x}}$.
III) Consider $\bar{\sigma}_{i j}, \bar{b}_{i} \in C_{b}^{\infty}\left(\mathbb{R}^{d}\right)$ and let $f \in \mathcal{S}$ (Schwartz space), then the map $x \rightarrow f \circ X_{t}^{x}$ is C^{∞}. Thus we get the linear map from $\mathcal{S} \rightarrow C^{\infty}: f \rightarrow X_{t}(f):=f \circ X_{t}$.

- Ex. For $\psi \in C_{c}^{\infty}$, define $Y_{t}(\psi):=\int_{\mathbb{R}^{d}} \psi(x) \delta_{X_{t}^{x}} d x$. Then Y_{t} is the formal adjoint of the map $f \rightarrow X_{t}^{\times}(f)$ as can be seen from the duality relation-

$$
\left\langle Y_{t}(\psi), f\right\rangle=\int_{\mathbb{R}^{d}} \psi(x) f\left(X_{t}^{x}\right) d x=\int_{\mathbb{R}^{d}} \psi(x)\left(X_{t}^{x}(f)\right)(x) d x=\left\langle\psi, X_{t}(f)\right\rangle
$$

- From Itô's formula

$$
f \circ X_{t}^{x}=f(x)+\int_{0}^{t} \bar{L} f\left(X_{s}^{x}\right) d s++\int_{0}^{t} \bar{A}_{i} f\left(X_{s}^{x}\right) d B_{s}^{i}
$$

$x \rightarrow f \circ X_{t}^{x} \in H$. Where $x \rightarrow \bar{L} f\left(X_{s}^{x}\right), x \rightarrow \bar{A}_{i} f\left(X_{s}^{x}\right)$ are C^{∞} functions. Then, from the above mentioned adjoint relation we get

$$
Y_{t}(\psi)=\psi+\int_{0}^{t} \bar{L}^{*} Y_{s}(\psi) d s+\int_{0}^{t} \bar{A}_{i}^{*} Y_{s}(\psi) d B_{s}^{i}
$$

because

$$
\begin{gathered}
\left\langle\bar{L} f\left(X_{s}^{*}\right), \psi\right\rangle=\left\langle\bar{L} f, Y_{s}(\psi)\right\rangle=\left\langle f, \bar{L}^{*} Y_{s}(\psi)\right\rangle \\
\left\langle\bar{A}_{i} f\left(X_{s}^{*}\right), \psi\right\rangle=\left\langle\bar{A}_{i} f, Y_{s}(\psi)\right\rangle=\left\langle f, \bar{A}_{i}^{*} Y_{s}(\psi)\right\rangle
\end{gathered}
$$

- Remark
I) The above computations extend to the case when ψ is a finite signed measure, say $\psi=\mu$; in that case define $Y_{t}(\psi):=\int_{\mathbb{R}^{d}} \delta_{X_{t}^{\times}} d \mu(x)$. In particular, when $\psi=\delta_{x}$, then $Y_{t}(\psi)=\delta_{X_{t}^{\times}}$. In this case the linear SPDE above coincides with the non-linear SPDE derived earlier for $\delta_{X_{t}^{\times}}$.
II) Taking expectation on both sides of the above linear SPDE

$$
\mathbb{E}\left(Y_{t}(\psi)\right)=\psi+\int_{0}^{t} \bar{L}^{*} \mathbb{E}\left(Y_{s}(\psi)\right) d s
$$

when $\psi=\delta_{x}$ we get the forward equation satisfied by

$$
\mathbb{E}\left(Y_{t}(\psi)\right)=\mathbb{E}\left(\delta_{X_{t}^{\times}}\right)=P(s, x, \cdot)
$$

Note that,

$$
\left\langle f, \mathbb{E}\left(Y_{t}(\psi)\right)\right\rangle=\left\langle f, \mathbb{E}\left(\delta_{X_{t}^{x}}\right)\right\rangle=\mathbb{E} f\left(X_{t}^{x}\right)=\int f(y) P(s, x, d y)
$$

$\mathcal{S}, \mathcal{S}^{\prime}, \mathcal{S}_{p}$ spaces

- Let $\mathcal{S}\left(\mathbb{R}^{d}\right)$ denotes the space of smooth rapidly decreasing real valued functions on \mathbb{R}^{d} with the topology given by L. Schwartz, called the Schwartz space

$$
\mathcal{S}\left(\mathbb{R}^{d}\right):=\left\{f \in C^{\infty}\left(\mathbb{R}^{d}\right)| | x^{\alpha} \partial^{\beta} f(x) \mid \rightarrow 0, \text { as }|x| \rightarrow \infty\right\}
$$

- $|x|$ denotes the Euclidean norm of \mathbb{R}^{d}.
- If $\beta=\left(\beta_{1}, \cdots, \beta_{d}\right) \in \mathbb{Z}_{+}^{d}$, then $|\beta|=\beta_{1}+\cdots+\beta_{d}$.
- $\partial^{\beta} \phi=\partial_{1}^{\beta_{1}} \cdots \partial_{d}^{\beta_{d}} \phi$.
- For $p \in \mathbb{R}, \mathcal{S}_{p}\left(\mathbb{R}^{d}\right)=$ closure of $\mathcal{S}\left(\mathbb{R}^{d}\right)$ w.r.t. $\|\cdot\|_{p}$.

$$
\langle f, g\rangle_{p}:=\sum_{k \in \mathbb{Z}_{+}^{d}}(2|k|+d)^{2 p}\left\langle f, h_{k}\right\rangle_{0}\left\langle g, h_{k}\right\rangle_{0}, \quad f, g \in \mathcal{S} .
$$

$\left\{h_{k}\right\}_{k \in \mathbb{Z}_{+}^{d}}$ is an ONB for $\mathcal{L}^{2}\left(\mathbb{R}^{d}, d x\right)$, called the Hermite functions.
$\langle\cdot, \cdot\rangle_{0}$ denotes inner product in \mathcal{L}^{2}.

- $h_{k}\left(x_{1}, \cdots, x_{d}\right):=h_{k_{1}}\left(x_{1}\right) \times \cdots \times h_{k_{d}}\left(x_{d}\right), \forall\left(x_{1}, \cdots, x_{d}\right) \in \mathbb{R}^{d}$

